Stellar Populations in Globular Cluster Cores - PowerPoint PPT Presentation

1 / 15
About This Presentation
Title:

Stellar Populations in Globular Cluster Cores

Description:

The Lorentz Center, Leiden, the Netherlands. Introduction ... This could depress the slope of the RGB sample, however it suggests a deficiency ... – PowerPoint PPT presentation

Number of Views:26
Avg rating:3.0/5.0
Slides: 16
Provided by: lorentz6
Category:

less

Transcript and Presenter's Notes

Title: Stellar Populations in Globular Cluster Cores


1
Stellar Populations in Globular Cluster Cores
  • Nathan Leigh
  • With Alison Sills and Christian Knigge
  • September 23, 2009
  • The Lorentz Center, Leiden, the Netherlands

2
Introduction
  • What are the observational signatures of stellar
    mergers?
  • ? blue stragglers?
  • ? abundance anomalies (e.g. Ferraro et al. 2006)?
  • ? rapid rotation (e.g. Glebbeek, Pols Hurley
    2008)?
  • ? dynamical evolution of clusters (e.g Portegies
    Zwart et al. 2004)?
  • ? evolved merger products (e.g. Sills, Karakas
    Lattanzio 2009)?

3
Introduction
  • Stellar populations in GCs are typically studied
    on a cluster-by-cluster basis (e.g. Sandquist
    Hess 2008)
  • Relative sizes CMD morphologies are used to
    constrain rate of stellar evolution and degree of
    He enrichment (e.g. Ferraro et al, 1991 Romano
    et al. 2007)
  • LFs and SB profiles are used to learn about
    dynamical evolution of clusters, universality of
    stellar MF, etc. (e.g. de Marchi Pulone 2007)
  • Very few trends found to account for
    cluster-to-cluster discrepancies reported in
    these studies

4
(No Transcript)
5
Our Approach
  • Apply a cluster-independent selection criterion
    to the colour-magnitude diagrams of 56 globular
    clusters taken from Piotto et al.s (2002) HST
    database
  • This provides the number of RGB, MSTO and HB
    stars in the core of each cluster
  • The size of each stellar population is compared
    to the core mass

6
Motivation
  • All things being equal, the number of stars in
    the cluster core belonging to each stellar
    population should scale linearly with the core
    mass
  • However, all things are not equal
  • ? the rate of two-body relaxation increases
    with decreasing cluster mass (e.g. Spitzer 1987)
  • ? the collision rate increases with increasing
    cluster mass (e.g. Davies, Piotto De Angeli
    2004)
  • ? the core binary fraction could depend on the
    core mass (e.g. Sollima 2008 Knigge, Leigh
    Sills 2009)
  • ? globular clusters may not be simple stellar
    populations (e.g. Anderson et al. 2009)

7
Figure 1 of Leigh, Sills Knigge (2009)
Colour-magnitude diagram for NGC 362 in the
(F439W-F555W)-F555W plane. Boundaries enclosing
the selected RGB, HB and MSTO populations are
shown.
8
NMSTO (1.02 0.01)log Ncore/103 (2.66
0.01) NRGB (0.89 0.03)log Ncore/103 (2.04
0.02) NHB (0.91 0.10)log Ncore/103 (1.58
0.05)
Figure 2 of Leigh, Sills Knigge (2009)
9
Implications
  • The number of RGB stars in GC cores does not
    direct trace the total stellar population in
    those cores
  • The number of RGB stars scales sub-linearly with
    core mass as the 3-? level
  • The ratio NRGB/NMSTO suggests a surplus of RGB
    stars in the least massive cores

10
Stellar Evolution
  • No reason to expect the rate of stellar evolution
    to depend on the cluster mass
  • Many of the most massive GCs are thought to be
    enriched in helium (e.g. Anderson et al. 2009)
  • This could depress the slope of the RGB sample,
    however it suggests a deficiency of RGB stars in
    the most massive GCs

11
The Suspects
  • Single star dynamics?
  • - two-body relaxation?
  • - increased cross-section for collision?
  • Binary effects?
  • - Roche lobe overflow in binaries?
  • Evolved blue stragglers?
  • - contamination from merger products?

12
(No Transcript)
13
NBS (0.47 0.06) log Ncore/103 (1.22
0.02) NRGB (0.89 0.03)log Ncore/103 (2.04
0.02) NRGB-BS (0.94 0.04) log Ncore/103
(1.97 0.02)
14
Summary
  • Compared NRGB, NMSTO NHB to Mcore in 56 GCs
  • Applicable to studies of both cluster and stellar
    evolution
  • NRGB scales sub-linearly with Mcore at the 3-?
    level
  • Contamination of RGB sample from evolved merger
    products?

15
References
  • Anderson, J., Piotto, G., King, I. R., Bedin, L.
    R. Guhathakurta, P. 2009, ApJ, 697, 58
  • Bedin, L. R., Piotto, G., Zoccali, M., Stetson,
    P. B., Saviane, I., Cassisi, S. Bono, G. 2008,
    AA, 363, 159
  • Davies, M. B., Piotto, G. De Angeli, F. 2004,
    MNRAS, 348, 129
  • De Marchi, G. Pulone, L. 2007, AA, 467, 107
  • Ferraro, F. R., Clementini, G., Fusi Pecci, F.
    Buonanno, R. 1991, MNRAS, 252, 357
  • Ferraro, F. R., Sabbi, E., Gratton, R., Piotto,
    G., Lanzoni, B., Carretta, E., Rood, R. T.,
    Sills, A., Fusi Pecci, F., Moehler, S., Beccari,
    G., Lucatello, S. Compagni, N. 2006, ApJ, 647,
    L53
  • Glebbeek, E., Pols, O. R., Hurley, J. R. 2008,
    AA, 488, 1007
  • Knigge, C., Leigh, N. Sills, A. 2009, Nature,
    457, 288
  • Leigh, N., Sills, A. Knigge, C. 2009, MNRAS
    Letters, accepted
  • Marconi, G., Andreuzzi, Pulone, L., Cassisi, S.,
    Tasta, V. Buonanno, R. 2001, AA, 380, 478
  • Milone, A. P., Piotto, G., Bedin, L. R.
    Sarajedini, A. 2008, MmSAI, 79, 623
  • Piotto, G., King, I. R., Djorgovski, S. G.,
    Sosin, C., Zoccali, M., Saviane, I., De Angeli,
    F., Riello, M., Recio-Blanco, A., Rich, R. M.,
    Meylan, G. Renzini, A. 2002, AA, 391, 945
  • Portegies Zwart, S. F., Baumgardt, H., Hut, P.,
    Makino, J. McMillan, S. L. W. 2004, Nature,
    428, 724
  • Romano, D., et al. 2007, MNRAS, 376, 405
  • Sandquist, E. L. Hess, J. M. 2008, AJ, 136,
    2259
  • Sills, A., Karakas, A. Lattanzio, J. 2009, ApJ,
    692, 1411
  • Sollima, A., Beccari, G., Ferraro, F. R., Fusi
    Pecci, F. Sarajedini, A. 2007, MNRAS, 380, 781
  • Spitzer, L. 1987, Dynamical Evolution of
    Globular Clusters (Princeton Princeton
    University Press)
Write a Comment
User Comments (0)
About PowerShow.com