Title: Stellar Populations in Globular Cluster Cores
1Stellar Populations in Globular Cluster Cores
- Nathan Leigh
- With Alison Sills and Christian Knigge
- September 23, 2009
- The Lorentz Center, Leiden, the Netherlands
2Introduction
- What are the observational signatures of stellar
mergers? - ? blue stragglers?
- ? abundance anomalies (e.g. Ferraro et al. 2006)?
- ? rapid rotation (e.g. Glebbeek, Pols Hurley
2008)? - ? dynamical evolution of clusters (e.g Portegies
Zwart et al. 2004)? - ? evolved merger products (e.g. Sills, Karakas
Lattanzio 2009)?
3Introduction
- Stellar populations in GCs are typically studied
on a cluster-by-cluster basis (e.g. Sandquist
Hess 2008) - Relative sizes CMD morphologies are used to
constrain rate of stellar evolution and degree of
He enrichment (e.g. Ferraro et al, 1991 Romano
et al. 2007) - LFs and SB profiles are used to learn about
dynamical evolution of clusters, universality of
stellar MF, etc. (e.g. de Marchi Pulone 2007) - Very few trends found to account for
cluster-to-cluster discrepancies reported in
these studies
4(No Transcript)
5Our Approach
- Apply a cluster-independent selection criterion
to the colour-magnitude diagrams of 56 globular
clusters taken from Piotto et al.s (2002) HST
database - This provides the number of RGB, MSTO and HB
stars in the core of each cluster - The size of each stellar population is compared
to the core mass
6Motivation
- All things being equal, the number of stars in
the cluster core belonging to each stellar
population should scale linearly with the core
mass - However, all things are not equal
- ? the rate of two-body relaxation increases
with decreasing cluster mass (e.g. Spitzer 1987) - ? the collision rate increases with increasing
cluster mass (e.g. Davies, Piotto De Angeli
2004) - ? the core binary fraction could depend on the
core mass (e.g. Sollima 2008 Knigge, Leigh
Sills 2009) - ? globular clusters may not be simple stellar
populations (e.g. Anderson et al. 2009)
7Figure 1 of Leigh, Sills Knigge (2009)
Colour-magnitude diagram for NGC 362 in the
(F439W-F555W)-F555W plane. Boundaries enclosing
the selected RGB, HB and MSTO populations are
shown.
8NMSTO (1.02 0.01)log Ncore/103 (2.66
0.01) NRGB (0.89 0.03)log Ncore/103 (2.04
0.02) NHB (0.91 0.10)log Ncore/103 (1.58
0.05)
Figure 2 of Leigh, Sills Knigge (2009)
9Implications
- The number of RGB stars in GC cores does not
direct trace the total stellar population in
those cores - The number of RGB stars scales sub-linearly with
core mass as the 3-? level - The ratio NRGB/NMSTO suggests a surplus of RGB
stars in the least massive cores
10Stellar Evolution
- No reason to expect the rate of stellar evolution
to depend on the cluster mass - Many of the most massive GCs are thought to be
enriched in helium (e.g. Anderson et al. 2009) - This could depress the slope of the RGB sample,
however it suggests a deficiency of RGB stars in
the most massive GCs
11The Suspects
- Single star dynamics?
- - two-body relaxation?
- - increased cross-section for collision?
- Binary effects?
- - Roche lobe overflow in binaries?
- Evolved blue stragglers?
- - contamination from merger products?
12(No Transcript)
13NBS (0.47 0.06) log Ncore/103 (1.22
0.02) NRGB (0.89 0.03)log Ncore/103 (2.04
0.02) NRGB-BS (0.94 0.04) log Ncore/103
(1.97 0.02)
14Summary
- Compared NRGB, NMSTO NHB to Mcore in 56 GCs
- Applicable to studies of both cluster and stellar
evolution - NRGB scales sub-linearly with Mcore at the 3-?
level - Contamination of RGB sample from evolved merger
products?
15References
- Anderson, J., Piotto, G., King, I. R., Bedin, L.
R. Guhathakurta, P. 2009, ApJ, 697, 58 - Bedin, L. R., Piotto, G., Zoccali, M., Stetson,
P. B., Saviane, I., Cassisi, S. Bono, G. 2008,
AA, 363, 159 - Davies, M. B., Piotto, G. De Angeli, F. 2004,
MNRAS, 348, 129 - De Marchi, G. Pulone, L. 2007, AA, 467, 107
- Ferraro, F. R., Clementini, G., Fusi Pecci, F.
Buonanno, R. 1991, MNRAS, 252, 357 - Ferraro, F. R., Sabbi, E., Gratton, R., Piotto,
G., Lanzoni, B., Carretta, E., Rood, R. T.,
Sills, A., Fusi Pecci, F., Moehler, S., Beccari,
G., Lucatello, S. Compagni, N. 2006, ApJ, 647,
L53 - Glebbeek, E., Pols, O. R., Hurley, J. R. 2008,
AA, 488, 1007 - Knigge, C., Leigh, N. Sills, A. 2009, Nature,
457, 288 - Leigh, N., Sills, A. Knigge, C. 2009, MNRAS
Letters, accepted - Marconi, G., Andreuzzi, Pulone, L., Cassisi, S.,
Tasta, V. Buonanno, R. 2001, AA, 380, 478 - Milone, A. P., Piotto, G., Bedin, L. R.
Sarajedini, A. 2008, MmSAI, 79, 623 - Piotto, G., King, I. R., Djorgovski, S. G.,
Sosin, C., Zoccali, M., Saviane, I., De Angeli,
F., Riello, M., Recio-Blanco, A., Rich, R. M.,
Meylan, G. Renzini, A. 2002, AA, 391, 945 - Portegies Zwart, S. F., Baumgardt, H., Hut, P.,
Makino, J. McMillan, S. L. W. 2004, Nature,
428, 724 - Romano, D., et al. 2007, MNRAS, 376, 405
- Sandquist, E. L. Hess, J. M. 2008, AJ, 136,
2259 - Sills, A., Karakas, A. Lattanzio, J. 2009, ApJ,
692, 1411 - Sollima, A., Beccari, G., Ferraro, F. R., Fusi
Pecci, F. Sarajedini, A. 2007, MNRAS, 380, 781 - Spitzer, L. 1987, Dynamical Evolution of
Globular Clusters (Princeton Princeton
University Press)