Chaotic Mining: Knowledge Discovery Using the Fractal Dimension - PowerPoint PPT Presentation

About This Presentation
Title:

Chaotic Mining: Knowledge Discovery Using the Fractal Dimension

Description:

Compute Fractal dimension of a k-itemset while computing its support. Information about the fractal dimension should be kept for use when computing k ... – PowerPoint PPT presentation

Number of Views:46
Avg rating:3.0/5.0
Slides: 17
Provided by: dxg
Category:

less

Transcript and Presenter's Notes

Title: Chaotic Mining: Knowledge Discovery Using the Fractal Dimension


1
(No Transcript)
2
Chaotic Mining Knowledge Discovery Using the
Fractal Dimension
  • Daniel Barbara
  • George Mason University
  • Information and Software Engineering Department
  • dbarbara_at_gmu.edu
  • By
  • Dhruva Gopal

3
Fractals
  • What are fractals
  • Property of a fractal
  • Self Similarity

4
(No Transcript)
5
Uses of fractals
  • Geologic activity
  • Planetary orbits
  • Weather
  • Fluid flow
  • databases

6
Fractal Dimensions
  • Number of possible dimensions?
  • Fractal dimension computation
  • Dq 1/(q-1)(logSi piq)/(log r)
  • Hausdorff dimension
  • Information dimension
  • Correlation dimension

7
Examples
  • Event Anomalies in time series
  • Self similarity in association rules
  • Analyzing patterns in datacubes
  • Incremental clustering

8
Event Anomalies
  • Time series
  • Stock price changes
  • TCP connection occurrence
  • Example
  • Half open TCP connections
  • Network Spoofing

9
Methodology
  • Half open connections are self similar
  • Collect data points every d seconds
  • Moving window of k d (k is an integer)
  • Fractal dimension will show a drastic decrease in
    case of spoofing
  • Other applications of fractals with time series
  • Password port in FTP service

10
Self Similarity in Association Rules
  • Parameters associated with a rule
  • Support
  • Confidence
  • Distribution of these transactions???
  • Seasonal
  • Promotional
  • Regular

11
Fractals in Association rules
  • Compute Fractal dimension of a k-itemset while
    computing its support
  • Information about the fractal dimension should be
    kept for use when computing k1th itemset

12
Analyzing Patterns in datacubes
  • Patterns
  • Null cells (no aggregate)
  • Compute fractal dimension of null cells
  • Drastic changes imply anomalous trends

13
Incremental Clustering
  • Clustering algorithms are needed to deal with
    large datasets
  • Extended K means algorithm
  • Use a variation of extended K means algorithm
    using fractal dimensions for deciding point
    membership

14
Conclusions
  • Fractals are powerful parameters used to uncover
    anomalous patterns in the databases
  • Paper discusses techniques that can be used, but
    none are implemented.

15
References
  • Fast Discovery of Association rules,R. Agrawal,
    H. Mannila, R. Srikant, H. Toivonen, A.I. Verkamo
  • John Sarraille and P. DiFalco, FD3,
    http//tori.postech.ac.kr/softwares/
  • http//www.math.umass.edu/mconnors/fractal/simila
    r/similar.html
  • http//tqd.advanced.org/3288/julia.html
  • http//www.tsi.enst.fr/marquez/FRACTALS/fdim/node
    7.html
  • http//www.physics.unlv.edu/thanki/thesis/node14.
    html

16
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com