Title: Optical tweezers
1Optical tweezers
- Manipulating the microscopic world
Tom Lummen, June 2004
2Introduction History
- 1609 Johannes Kepler noticed Suns radiant
pressure - 1970 Arthur Ashkin of Bell Labs builds
levitation trap - 1978 Ashkin builds two-beam trap
- 1986 Ashkin builds single-beam gradient force
trap Optical tweezers
3Working principle of optical tweezers
- One photon carries momentum p h/ ?
- photon refraction momentum change
- Transparent particle of large refractive
- index lens
- Gaussian beam intense center
- momentum conservation
- Lateral trapping refraction of Gaussian
- beam gradient force (Fgr) and a
- scattering force (Fscat).
- The lateral gradient force pulls particle
- to beam center
4Working principle of optical tweezers
- Scattering force (radiant pressure)
- pushes the particle
- Strongly focused beam axial intensity
- gradient axial gradient force
- 3D optical trapping axial gradient force
- (Fgrad) gt scattering force
-
- Strong enough focusing Fgrad gt Fscat
- fullfilled
- Optical forces in nN-pN range
5Working principle of optical tweezers
- Trapped objects - Bose-Einstein condensates
- - chromosomes
- - bacteria
-
- Specific designs optically
- induced rotation
- Variations/additions other
- functionalities
6Unconventional optical tweezers
- Variants different modes of light
- Optical vortices donut intensity
pattern - they trap dark-seeking particles
- absorbing, reflecting or
low-refractive-index -
- Laguerre-Gaussian mode
- helical phase profile
- angular momentum
- optical rotation
-
7Unconventional optical tweezers
Variants different modes of light
- Laguerre-Gaussian mode (index l) and Gaussian
- beam superposed spiral pattern
-
-
- Variation of relative phase optical
rotation
8Multiple dynamic optical tweezers
- Multiple optical tweezers several methods
- Time-shared optical tweezers computer
controlled mirrors - trap periodically scanned
- arbitrary trapping patterns
- - restricted by minimum required
- scanning period
- - only formation of 2D patterns possible
The Chinese character for light
9Multiple dynamic optical tweezers
Multiple optical tweezers several methods
- Dynamic holographic optical tweezers
computer-addressed - spatial light modulator (SLM) splits
incident beam - specific pattern specific spatial
light modulation - (phase hologram)
- phase holograms calculated beforehand
- Also 3D trapping patterns can be generated
10Multiple dynamic optical tweezers
Multiple optical tweezers several methods
- The generalized phase contrast (GPC) method SLM
- spatial phase profile conversion to
spatial intensity profile -
- No need to calculate phase holograms
efficient dynamic control - Only 2D trapping patterns possible
11Multiple dynamic optical tweezers
- Multiple dynamic optical tweezers
microfluidic pumps - Rotating lobe-pump rotating lobes
laminar flow - - reversing the rotation directions
flow reversed
12Multiple dynamic optical tweezers
Multiple dynamic optical tweezers
microfluidic pumps
- Peristaltic pump propagating sine wave
laminar flow - - changing propagation direction
reversed flow
13Conclusions/Future prospects
- Optical tweezers unique non-invasive
control of wide variety of microscopic particles - Variants field of applicability even
further expanded - also optical rotation
- Multiple dynamic optical tweezers
dynamic reconfiguration of arbitrary trapping
patterns - functional micromachines lab-on-a-chip
- technologies
14Questions/comments