Conductance through coupled quantum dots - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

Conductance through coupled quantum dots

Description:

... D, in the crossover regime an unstable non-Fermi liquid (NFL) fixed point exists ... ZOOM. Zitko & Bonca. PRL. 98, 047203. www-f1.ijs.si/~bonca. RTN NANO ... – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 21
Provided by: jbo71
Category:

less

Transcript and Presenter's Notes

Title: Conductance through coupled quantum dots


1
Conductance through coupled quantum dots
J. Bonca Physics Department, FMF, University of
Ljubljana, J. Stefan Institute, Ljubljana,
SLOVENIA
2
  • Collaborators
  • R. Žitko, J. Stefan Inst., Ljubljana, Slovenia
  • A.Ramšak and T. Rejec, FMF, Physics dept.,
    University of Ljubljana and J. Stefan Inst.,
    Ljubljana, Slovenia

3
Introduction
  • Experimental motivation
  • Three QDs
  • Good agreement between CPMC and GS and NRG
    approaches
  • Many different regimes
  • tgtG three peaks in G(d) due to 3 molecular
    levels
  • tltG a single peak in G(d) of width U
  • At tltltD, in the crossover regime an unstable
    non-Fermi liquid (NFL) fixed point exists
  • Two-stage Kodo effect is also followed by the NFL
  • N-parallel QDs
  • d0 SN/2 Kondo effect
  • dU/2 Quantum phase transitions

4
Nature, 391 (1998)
Science, 281 (1998)
5
Double- and multiple- dot structures
Holleitner et el., Science 297, 70 (2002)
Craig et el., Science 304 , 565 (2004)
6
Quantum Dot (Anderson single impurity problem)
d
7
Three alternative methods
  • Numerical Renormalization Group using Reduced
    Density Matrix (NRG), Krishna-murthy, Wilkins and
    Wilson, PRB 21, 1003 (1980) Costi, Hewson and
    Zlatic, J. Phys. Condens. Matter 6, 2519,
    (1994) Hofstetter, PRL 85, 1508 (2000).
  • Projection variational metod (GS), Schonhammer,
    Z. Phys. B 21, 389 (1975) PRB 13, 4336 (1976),
    Gunnarson and Shonhammer, PRB 31, 4185 (1985),
    Rejec and Ramšak, PRB 68, 035342 (2003).
  • Constrained Path Monte Carlo method (CPMC),
    Zhang, Carlson and Gubernatis, PRL 74 ,3652
    (1995)PRB 59, 12788 (1999).

8
How to obtain G from GS properties
  • CPMC and GS are zero-temperature methods ? Ground
    state energy
  • Conditions System is a Fermi liquid


N-(noninteracting) sites, N ?8

G02e2/h
Rejec, Ramšak, PRB 68, 035342 (2003)
9
Conductance formalisms
U 0
non-equilibrium transport T ? 0, V ? 0
Landauer Büttiker formula
In Fermi liquid systems
Fisher Lee relation
10
Comparison CPMC,GS,NRG
  • CPMC,
  • GS-variational,
  • Hartree-Fock

Rejec, Ramšak, PRB 68, 035342 (2003)
Ultt Wide-band
  • NRG

Meir-Wingreen, PRL 68, 2512 (1992)
11
Comparison CPMC,GS,NRG
  • CPMC,
  • GS-variational,
  • Hartree-Fock
  • NRG

Ugtgtt Narrow-band
Meir-Wingreen, PRL 68, 2512 (1992)
12
Fermi-liquid E(f) is a universal
function of f
Number of electrons odd
Rejec, Ramšak, PRB 68, 035342 (2003)
13
Zero-bias conductance
Rejec, Ramšak, PRB 68, 035342 (2003)
14
Connection of G with charge stiffness
Rejec, Ramšak, PRB 68, 035342 (2003)
15
GS variational method
Auxiliary Hamitonian
Variational wavefunctions
Projection operators
EH the lowest eigenvalue gives the
approximation to the GS of H
16
GS variational method cont.
Using Wicks theorem
17
Three coupled quantum dotsZitko, Bonca, Rejec,
Ramsak, PRB 73, 153307 (2006) 
MO
AFM
TSK
  • Using NRG technique
  • Using GS variational NGS 1000,2000
  • Using CPMC NCPMC 100,180

18
Three coupled quantum dots
Half-filled case!
MO
AFM
TSK
  • Using NRG technique
  • Using GS variational NGS 1000,2000
  • Using CPMC NCPMC 100,180

19
Three coupled QDs
Half-filled case!
Oguri, Nisikawa,Hewson
20
Three coupled QDs
1
2
3
Oguri, Nisikawa,Hewson, cond-mat/0504771
Half-filled case!
21
Three QDs Non-Fermi-Liquid
CvT lnT , cslnT, S(T?0)(1/2) ln 2
TK(1)
AFM
SU(2)spin x SU(2)izospin
MO
TK(2)
MO
AFM
TSK
Zitko Bonca PRL 98, 047203 Kuzmenko et
al.,Europhy.Lett. 64 218 2003 OBSERVATION Potok
et al., Cond-mat/0610721
TK(1)
TK(2)
TD
ZOOM
NFL
22
Three QDs Non-Fermi-Liquid CvT lnT , csln T
Zitko Bonca PRL 98, 047203
TK(1)
MO
AFM
AFM
MO
ZOOM
TSK
TK(2)
TK(1)
TK(2)
TD
NFL
23
Three coupled QDs Non-Fermi-Liquid
MO
AFM
TSK
Affletck et al. PRB 45, 7918 (1992)
24
Three coupled QDs Non-Fermi-Liquid
MO
AFM
TSK
25
Quantum phase transitions in parallel QDs
26
N - quantum dots
SN/2
SN/2-1
  • Three different time-scales

S(S1)/3
N/4
N/8
  • Separation of time-scales
  • Different temperature-regimes

27
Quantum phase transitions in parallel QDs
  • d0 SN/2 Kondo effect
  • dU/2 ? Discontinuities in G
  • Discontinuities in G ? Quantum phase transitions

28
Quantum phase transitions in parallel QDs
29
N - quantum dotsR.Z. J.B. PRB 74, 045312
(2006)
Schrieffer-Wolf
Perturbation in Vk4-th order
30
Conclusions
  • Three QDs in series
  • Good agreement between NRG, GS, and CPMC.
  • Different phases exist
  • tgtG three peaks in G(d) due to 3 molecular
    levels (MO), tltG a single peak in G(d) of
    width U in the AFM regime
  • Two-stage Kondo (TSK) regime, when tltTK
  • NFL behavior is found in the crossover regime. A
    good candidate for the experimental observation.

31
Conclusions
  • Three QDs in series
  • Good agreement between NRG, GS, and CPMC.
  • Different phases exist
  • tgtG three peaks in G(d) due to 3 molecular
    levels (MO), tltG a single peak in G(d) of
    width U in the AFM regime
  • Two-stage Kondo (TSK) regime, when tltTK
  • NFL behavior is found in the crossover regime. A
    good candidate for the experimental observation.
  • N-parallel QDs
  • d0 SN/2 Kondo effect
  • dU/2 Quantum phase transitions
Write a Comment
User Comments (0)
About PowerShow.com