Title: Relativistic parameterization of the SCC-DFTB method
1Relativistic parameterization of the SCC-DFTB
method
- Henryk Witek
- Institute of Molecular Science Department of
Applied Chemistry - National Chiao Tung University
- Hsinchu, Taiwan
2Aims
- Provide the DFTB community with a general and
easy-to-use tool for developing Slater-Koster
files - Develop a reliable set of SCC-DFTB parameters
suitable for modeling chemical reactions
3Requirements
- Important issues of the project
- general character
- relativistic framework
- well-defined procedure
- high automaticity
- error control test suite
4Theoretical framework
- 4-component Dirac-Kohn-Sham equation
- Modification of relativistic Dirac-Slater code of
J.P. Desclaux - Comp. Phys. Comm. 1, 216 (1969)
- Comp. Phys. Comm. 9, 31 (1975)
- Density confinement
- Spinor confinement
5Slater-Koster files
- One-center quantities
- orbital energies
- orbital hardness
- orbital spin-densities interaction parameters
- Two-center quantities
- Hamiltonian integrals
- overlap integrals
- repulsive potentials
6Input description
- Atomic information
- nuclear charge
- number of electrons
- shell occupations
- Method information
- exchange-correlation functional type
- confinement radius
- way to construct molecular XC potential
- density superposition
- potential superposition
7Output spinors of carbon
atom electronic structure and final shell
energies shell type occupation
final energy
1 S1/2 2.00
-11.29598 2 S1/2
2.00 -0.44465 2 P1/2
1.00 -0.12665 2
P3/2 1.00 -0.12623
radial overlap integrals for spinors spinor
1 spinor 2 overlap integral
1
S1/2 2 S1/2 -0.000000000022
8Output spinors of lead
atom electronic structure and final shell
energies shell type occupation
final energy
1 S1/2 2.00 -3256.80560 2
S1/2 2.00 -585.97772 2
P1/2 2.00 -564.09214 2
P3/2 4.00 -482.19388 3
S1/2 2.00 -141.89459
5
D3/2 4.00 -0.79336 5
D5/2 6.00 -0.68107 6
S1/2 2.00 -0.33752 6
P1/2 2.00 -0.09002 6
P3/2 0.00 -0.04704
9Output spinors of lead
radial overlap integrals for spinors
spinor 1 spinor 2 overlap
integral
1 S1/2 2 S1/2
0.000000000068 1 S1/2 3 S1/2
0.000000000016 2 S1/2 3
S1/2 0.000000000186 2 P1/2
3 P1/2 0.000000000099 2
P3/2 3 P3/2 0.000000000094
2 P3/2 6 P3/2
0.000000000048 3 P3/2 6 P3/2
-0.000000000358 4 P3/2 6 P3/2
-0.000000001312 5 P3/2
6 P3/2 0.000000000096
10Output atomic density
error for the fitted atomic density at grid
points density norm1
norm2 norm8
dn
0.000010 0.000019 0.000104
renormalization of fitted density gt
density renormalized from 5.999981 to 6.000000
electrons
C
error for the fitted atomic density at grid
points density norm1
norm2 norm8
dn
0.030532 0.049705 0.147628
renormalization of fitted density gt
density renormalized from 82.000529 to 82.000000
electrons
Pb
11radial density of lead
12Semi-relativistic orbitals
- Scalar relativistic valence orbitals are obtained
by - neglecting small component
- averaging spin-orbit components of every scalar
orbital - V.Heera, G. Seifert, P. Ziesche, J. Phys. B 17,
519 (1984)
13Large vs. small component
14Averaging spin-orbit split components of a spinor
15Output orbitals of carbon
info about scalar atomic orbitals num
orbital occupation final energy
type
1 1s 2.00
-11.29598 core 2 2s
2.00 -0.44465 valence 3
2p 2.00 -0.12637
valence error for the fitted curve at grid
points orbital norm1
norm2 norm8
2s 0.000231
0.000721 0.005025 2p
0.000013 0.000025 0.000108
renormalization after fit and neglecting small
component gt orbital 2s renormalized from
0.999957 to 1.0d0 gt orbital 2p
renormalized from 0.999957 to 1.0d0
16Output orbitals for lead
info about scalar atomic orbitals num
orbital occupation final energy
type
1 1s 2.00
-3256.80560 core 2
2s 2.00 -585.97772
core 3 2p 6.00
-509.49330 core 4
3s 2.00 -141.89459
core 5 3p 6.00
-119.52024 core 6
3d 10.00 -94.16394
core 7 4s 2.00
-32.79553 core 8
4p 6.00 -25.30912
core 9 4d
10.00 -15.92391 core
10 4f 14.00
-5.84011 core 11 5s
2.00 -5.53058
valence 12 5p 6.00
-3.33518 valence 13
5d 10.00 -0.72598
valence 14 6s
2.00 -0.33752 valence
15 6p 2.00
-0.06137 valence
17Output orbitals for lead
fitting valence orbitals with gaussians
error for the fitted curve at grid points
orbital norm1 norm2
norm8
5s 0.000048
0.000138 0.002025 5p
0.000047 0.000094 0.000988
5d 0.000143 0.000245
0.000807 6s 0.000108
0.000257 0.003610 6p
0.000026 0.000045 0.000371
renormalization after fit and neglecting small
component gt orbital 5s renormalized from
0.999235 to 1.0d0 gt orbital 5p
renormalized from 0.990674 to 1.0d0
gt orbital 5d renormalized from 0.998799
to 1.0d0 gt orbital 6s renormalized
from 0.999913 to 1.0d0 gt orbital
6p renormalized from 0.991615 to 1.0d0
18Relativistic vs. non-relativistic atomic
orbitals carbon atom
19Relativistic vs. non-relativistic atomic
orbitals carbon atom
20Relativistic vs. non-relativistic atomic
orbitals lead atom
21Relativistic vs. non-relativistic atomic
orbitals lead atom
22Confinement potential
- Additional term Vconf in Dirac-Kohn-Sham
effective potential - contraction of orbitals exponential tail
- relaxation of basis set
- additional variational parameter in the formalism
23Effect of the confinement potentialradial
density of Pb
24Repulsive potentials
- Effective two-center, distance-dependent
potentials accounting for - repulsion between atomic chemical cores
- double counting terms in electronic part
- Total DFTB energy is
25Constructing C-C repulsive potential
M. Sternberg, Ph.D. Thesis
26repulsive C-C potential
Malolepsza, Witek, and Morokuma, ChPL 412, 237
(2005)
27performance of new C-C potential
Malolepsza, Witek, and Morokuma, ChPL 412, 237
(2005)
28Resultant repulsive potentials
29Derivatives of repulsive potentials
30Analytical form of potentials
31Analytical form of potentials
32Analytical form of potentials
33First derivatives of repulsive potential
NO2 O3 NO2-
H2O2
H2O
H2O2
H3O NH3
O3
H2
O2
34First derivatives of repulsive potential
NO2-
HNO
NO2, HNO
NO
NH3
HNO
H2O2
H2O2
H3O
H2O
35Conclusions
- Convenient relativistic tool for automatic DFTB
parameterization is suggested - New form of potential parameterization is proposed
36Acknowledgements
- Christof Köhler
- Keiji Morokuma
- Marcus Elstner
- Thomas Frauenheim