Characterising the Atmospheres of Transiting Exoplanets - PowerPoint PPT Presentation

About This Presentation
Title:

Characterising the Atmospheres of Transiting Exoplanets

Description:

Characterising the Atmospheres of Transiting Exoplanets – PowerPoint PPT presentation

Number of Views:45
Avg rating:3.0/5.0
Slides: 58
Provided by: simo219
Category:

less

Transcript and Presenter's Notes

Title: Characterising the Atmospheres of Transiting Exoplanets


1
Characterising the Atmospheres of Transiting
Exoplanets Today
Giovanna Tinetti Royal Society/University
College London
2
Deming et al., 2005 Charbonneau et al., 2005
Charbonneau et al., 2002
3
Combined light star-planet
Harrington et al., 2006
4
HD209458b,HD189733b,XO-1b
HD 209458b Mass 0.69 Mj Radius 1.32
Rj Parent star G0 Distance 0.045 AU HD
189733b Mass 1.15 Mj Radius 1.156
Rj Parent Star K1-K2 Distance 0.0312
5
Seager Sasselov, ApJL, 2000
UV-VISBrown, ApJ,
2001
VIS-NIRTinetti et
al., ApJL, 2007 Kipping Tinetti, in prep
Mid-IR
Probing the terminator with transmission
spectroscopy
6
Probing the day side
O3
  • Sensitive to temperature
  • Sensitive to vertical distribution of gases

7
Sodium
8
Na in the atmosphere of Hot-Jupiters


Ground-based observations
Hubble-STIS
Snellen et al., 2008 Sing et al., 2008
Redfield et al., 2007
589. nm Wavelength (nm)
Charbonneau et al., 2002
9
C/O ratio solar
The chemistry of Hot-Jupiters
CO
CO2
  • Photochemistry
  • predicted with Kinetics
  • (Liang et al., 2003,2004)
  • Zanhle et al., 2009

H2O
C2H2
CH4
10
Water
11
IRAC transmission band-photometry
Water line list BT2 Barber et al., 2006
Beaulieu et al., 2007
Knutson et al., 2007
Water T-P 1200 K _at_ 1 bar, 700 K _at_ mbar
HD189733b, terminator
Tinetti et al., Nature, 2007
12
IRAC transmission band-photometry
HD209458b, terminator
Water T-P 2500 K _at_ 1 bar, 1700 K _at_ mbar
Beaulieu, Kipping, Batista, Tinetti, Ribas et
al., submitted
13
Methane
14
NICMOS transmission spectroscopy
HD189733b, terminator
Swain, Vasisht, Tinetti, Nature, 2008
15
UV-IR transmission spectroscopy
Swain et al., 2008
Redfield et al., 2007 Na from the ground
Knutson et al., 2007
Beaulieu et al., 2007
16
NICMOS transmission spectroscopy
HD209458b, terminator
H2O
CH4
Deroo, Swain, Tinetti, Griffith, Vasisht, in prep
17
NICMOS transmission spectroscopy
CH4
H2O
XO1b, terminator
Tinetti, Swain Deroo, Vasisht, Griffith et al.,
in prep
18
Carbon Dioxide
19
NIR emission spectroscopy NICMOS
HD189733b, day-side
H2O
CH4
CO2
CH4
Swain, Vasisht, Tinetti et al., ApJL, 2009
20
NIR-MIR emission spectroscopy
HD189733b, day-side
NICMOS, Swain et al., 2009
CH4
H2O
CH4
CO2
Swain et al, submitted Griffith Tinetti, in
prep
21
NIR-MIR emission spectroscopy
MIPS photometry Knutson et al., 2008
HD189733b, day-side
CO2
H2O
IRAC photometry Charbonneau et al., 2008
CH4
Deming et al.
IRS new reduction Swain et al.
IRS spectroscopy Grillmair et al., 2008
NICMOS, Swain et al., 2009
CO2
Swain et al, submitted Griffith Tinetti, in
prep
22
NIR emission spectroscopy
HD209458b, day-side
H2O
CH4
CO2
CH4
CO2
Swain, Tinetti, Vasisht, Deroo, Griffith, et al.,
2009
23
NIR emission spectroscopy
HD209458b, day-side
Swain, Tinetti, Vasisht, Deroo, Griffith, et al.,
2009
24
Exploring the vertical thermal structure
  • Thermal
  • variations 50
  • (Hearty, et al. 2009)

Desert
(AIRS data)
Mid-lat
Polar
25
Exploring parameter space T-P
HD209458b, day-side
Swain, Tinetti, Vasisht, Deroo, Griffith, et al.,
2009
26
Degeneracy T-P profile, mixing ratios
Swain, Tinetti, Vasisht, Deroo, Griffith, et al.,
2009
27
Degeneracy composition T-P profile
Swain, Tinetti, Vasisht, Deroo, Griffith, et al.,
2009
28
Comparison HD189-HD209
29
Conclusions
  • We find water vapour, methane present in all 3
    Hot-Jupiters
  • CO2, hazes, CO are also likely to be present
  • There is a degeneracy of interpretation mixing
    ratios/thermal profiles.
  • More data at higher resolution are desirable to
    break the degeneracy,
  • and also better line lists for methane,
    hydrocarbons, H2S, CO2, etc. _at_ 1000-2000K

30
Acknowledgments
31
(No Transcript)
32
Water, BT2, between 800K and 2500K
33
Coming soon
High-res. Spectroscopy from ground, Super-Earths
Earth-size planets
34
James Webb Space Telescope NASA-ESA (launch
2014)
High-res. Spectroscopy for Hot-Jupiters/Neptunes
Super-Earths Earth-size planets
35
SPICA
  • Japanese (ISAS/JAXA) proposal for successor
    mission to Spitzer, Akari and Herschel
  • Telescope 3.5m, lt5 K
  • Herschel 3.5m, 80K
  • JWST 6m, 45K
  • Core ? 5-200 µm
  • ??0.35-14
  • Orbit Sun-Earth L2 Halo
  • Warm Launch, Cooling in Orbit
  • No Cryogen ? 3.2 t
  • Long Lifetime
  • Launch 2017

36
THESIS the mission for combined light
  • 2-5 micron, SWIR 5-15 micron, MWIR
  • PI Mark Swain

37
Acknowledgments
38
Back-up
39
IRAC transmission band-photometry
Beaulieu, Kipping, Batista, Tinetti, Ribas et
al., submitted
40
IRAC transmission band-photometry
41
IRAC transmission band-photometry
5.8 micron, a linear drift
42
Spectral data measured simultaneously during a
single eclipse event.
Well sampled lightcurve agrees.
Due diligence shows multi-eclipse photometry
uncertainty too large to support the Sing et al.
2009 claim.
Poorly sampled lightcurve disagrees.
Sing et al. 2009
43
There is only a way to correct a transit for
spots not having to.
  • Primary eclipse depth varies due to star spots.
  • HD 189733b has 1.5 V band changes over 11
    days (blue).
  • Single visit photometry coverage inadequate for
    eclipse depth measure so visits (red, black)
    combined by adjusting to common scale is
    required 0.01 precision achieved?.
  • Uncertainty 0.2 measured by 1.87 vs 1.67 ? µm
    flux flip in addition to uncertain
    variability correction.
  • Sing et al. need 0.01 relative visit precision
    for their claim.
  • Flux flip shows true measurement uncertainty is
    20 times greater than level need to support
    claim.
  • Error bars in Sing et al. 2009 are systematically
    unrealistically small.
  • Spectroscopy get data all at once for robust
    differential eclipse depth measurement single
    eclipse avoids uncertainty of combining visits

Fig. 2 Sing et al. 2009
44
Carbon Monoxide?
45
IRAC Secondary transit photometry
HD189733b, day-side
water CO
Charbonneau et al., 2008 Barman, 2008 Knutson
et al., 2008
46
NIR-MIR emission spectroscopy
MIPS photometry Knutson et al., 2008
HD189733b, day-side
CO2
H2O
IRAC photometry Charbonneau et al., 2008
CH4
Deming et al.
IRS new reduction Swain et al.
IRS spectroscopy Grillmair et al., 2008
NICMOS, Swain et al., 2009
CO2
Swain et al, submitted Griffith Tinetti, in
prep
47
Hydrogen Sulfide?
PNNL
48
S, N, C, O abundance solar
The chemistry of Hot-Jupiters
  • Photochemistry
  • predicted with Kinetics
  • (M.C. Liang private communication)
  • Zahnle et al., 2008

S-chain
H2S gt 10-5
Tinetti, Liang, et al., ApjL, 2007
49
CxHx, HCN?
PNNL HITRAN GEISA UCL -gt HCN (Tennyson,
Harris) UCL -gt C2H2 (Tennyson)
50
MIR emission spectroscopy
Swain, et al. submitted Bouwman et al., in prep
51
James Webb Space Telescope performances (MIRI)
Probe the atmospheres of Earth-size planets in
the habitable zone of M-stars
Cavarroc, Cornia, Tinetti, Boccaletti
52
Terrestrial Planet Spectra Vary Widely in Solar
System
MIR signatures for terrestrial planets in our
Solar System
53
Degeneracy T-P profile, mixing ratios
Swain, Tinetti, Vasisht, Deroo, Griffith, et al.,
2009
54
Water, BT2, between 800K and 2500K
55
NIR emission spectroscopy NICMOS
HD189733b, day-side
Swain, Vasisht, Tinetti et al., ApJL, 2009
56
annulus/Rs2 0.01
57
Rplanet2/Rstar2 1
Write a Comment
User Comments (0)
About PowerShow.com