Title: Teknik Peramalan: Materi minggu kesepuluh
1Teknik Peramalan Materi minggu kesepuluh
- ? Model ARIMA Box-Jenkins untuk data time series
yang TIDAK STASIONER - ? Identification of NONSTATIONARY TIME SERIES
? Estimation of ARIMA model
? Diagnostic Check
of ARIMA model
? Forecasting - ? Studi Kasus Model ARIMAX (Analisis
Intervensi, Fungsi Transfer dan Neural Networks)
2Example Weekly sales of Ultra Shine toothpaste
(in units of 1000 tubes) Bowerman and
OConnell, pg. 478
3Example IDENTIFICATION step
stationarity and ACF
Dying down extremely slowly
ACF
Nonstationary time series
4Example IDENTIFICATION step
Difference Wt Yt Yt-1
Wt ? AR(1) or Yt ? ARI(1,1)
Stationary time series
ACF
PACF
Dies down
Cuts off after lag 1
5Example ESTIMATION and DIAGNOSTIC CHECK step
Yt 3.0232 1.6591 Yt-1 0.6591 Yt-2 at
Estimation and Testing parameter
Diagnostic Check (white noise residual)
6Example DIAGNOSTIC CHECK step Normality test
of residuals
7Example FORECASTING step
MINITAB output
8Comparison ARIMA versus Trend Analysis
ARIMA(1,1,0) MSE 7.647
9Plot comparison ARIMA versus Trend Analysis
ARIMA(1,1,0) MSE 7.647
Trend Analysis MSE 598.212
Forecast comparison
10Plot RESIDUAL comparison ARIMA versus Trend
Analysis
ARIMA(1,1,0) MSE 7.647
Trend Analysis MSE 598.212
11MINITAB command IDENTIFICATION Step
Plot Data ? stationarity data
To make stationarity data
ACF PACF data ? to find tentative
ARIMA model