Title: TM 661
1TM 661
- Multiple Investment Alternatives
2Summary
3Summary
- NPW gt 0 Good Investment
- EUAW gt 0 Good Investment
4Summary
- NPW gt 0 Good Investment
- EUAW gt 0 Good Investment
- IRR gt MARR Good Investment
5Summary (Single Investment)
- NPW gt 0 Good Investment
- EUAW gt 0 Good Investment
- IRR gt MARR Good Investment
- Note If NPW gt 0 EUAW gt 0
- IRR gt MARR
6Multiple Investments
- NPWA gt NPWB Choose A
- Must use same planning horizon
7Multiple Investments
- NPWA gt NPWB Choose A
- Must use same planning horizon
- EUAWA gt EUAWB Choose A
- Same Planning Horizon implicit in computation
8Multiple Investments
- NPWA gt NPWB Choose A
- Must use same planning horizon
- EUAWA gt EUAWB Choose A
- Same Planning Horizon implicit in computation
- IRRA gt IRRB Choose A
9Multiple Investments
- NPWA gt NPWB Choose A
- Must use same planning horizon
- EUAWA gt EUAWB Choose A
- Same Planning Horizon implicit in computation
- IRRA gt IRRB Choose A
- Must use Incremental Rate-of-Return
- IRRB-A lt MARR Choose A
10 Example
- Suppose we have two projects, A B
- A B Initial
cost 50,000 80,000 - Annual maintenance 1,000 3,000
- Increased productivity 10,000 15,000
- Life 10 10
- Salvage 10,000 20,000
11Present Worth A
- A
- NPW(10) -50 9(P/A,10,10) 10(P/F,10,10)
-
12Present Worth A
- A
- NPW(10) -50 9(P/A,10,10) 10(P/F,10,10)
- -50 9(6.1446) 10(.3855)
-
13Present Worth A
- A
- NPW(10) -50 9(P/A,10,10) 10(P/F,10,10)
- -50 9(6.1446) 10(.3855)
- 9,156
14Present Worth B
80
NPW(10) -80 12(P/A,10,10) 20(P/F,10,10)
15Present Worth B
80
NPW(10) -80 12(P/A,10,10)
20(P/F,10,10) -80 12(6.1446) 20(.3855)
16Present Worth B
80
NPW(10) -80 12(P/A,10,10)
20(P/F,10,10) -80 12(6.1446)
20(.3855) 1,445
17Conclusion
18Equivalent Worth
A
EUAW(10) -50(A/P,10,10) 9 10(A/F,10,10)
19Equivalent Worth
A
EUAW(10) -50(A/P,10,10) 9
10(A/F,10,10) -50 (.1627) 9 10(.0627)
20Equivalent Worth
A
EUAW(10) -50(A/P,10,10) 9
10(A/F,10,10) -50 (.1627) 9 10(.0627)
1,492
21Equivalent Worth
B
EUAW(10) -80(A/P,10,10) 12
20(A/F,10,10)
22Equivalent Worth
B
EUAW(10) -80(A/P,10,10) 12
20(A/F,10,10) -80(.1627) 12 20(.0627)
23Equivalent Worth
B
EUAW(10) -80(A/P,10,10) 12
20(A/F,10,10) -80(.1627) 12 20(.0627)
238
24Conclusion
EUAWA gt EUAWB Choose A
25Future Worth Analysis
- Is an extension of present value.
- FW PW (F/P, i, n)
- In the previous example,
- FWA 9,156 (F/P, 10,10)
- 9,156 (2.5937)
- 23747.92
- FWB (F/P, 10,10)
- 1,445 (2.5937)
- 3747.90
- A is selected.
26Comparing alternatives with Different Planning
Horizon
- The Present Worth of the Alternatives must be
compared over the same number of years (planning
horizon). - If projects have been defined over different
planning periods, compare them over a period of
time equal to the least common multiple (LCM) of
their lives.
27Example NPW
A
NPW -4 3.5(P/A, 10,3)
4.5(P/F,10,3)
28Example NPW
A
NPW -4 3.5(P/A, 10,3)
4.5(P/F,10,3) -4 3.5(2.4869) 4.5(.7513)
29Example NPW
A
NPW -4 3.5(P/A, 10,3)
4.5(P/F,10,3) -4 3.5(2.4869)
4.5(.7513) 8.085 8,085
30Example NPW
5,000
3,000
B
3
6
NPW -5 3(P/A,10,6) 5(P/F,10,6)
5,000
31Example NPW
5,000
3,000
B
3
6
NPW -5 3(P/A,10,6) 5(P/F,10,6)
-5 3(4.3553) 5(.5645)
5,000
32Example NPW
5,000
3,000
B
3
6
NPW -5 3(P/A,10,6) 5(P/F,10,6)
-5 3(4.3553) 5(.5645) 10.888 10,888
5,000
33Planning Horizons
- Least Common Multiple
- Shortest Life
- Longest Life
- Standard Planning Horizon
34Example NPW
A
NPW -4 -4(P/F,10,3) 3.5(P/A,10,6)
4.5(P/F,10,3) 4.5(P/F,10,6)
35Example NPW
A
NPW -4 -4(P/F,10,3) 3.5(P/A,10,6)
4.5(P/F,10,3) 4.5(P/F,10,6) -4
.5(P/F,10,3) 3.5(P/A,10,6) 4.5(P/F,10,6)
36Example NPW
A
NPW -4 -4(P/F,10,3) 3.5(P/A,10,6)
4.5(P/F,10,3) 4.5(P/F,10,6) -4
.5(P/F,10,3) 3.5(P/A,10,6) 4.5(P/F,10,6)
-4 .5(.7513) 3.5(4.3553) 4.5(.5645)
37Example NPW
A
NPW -4 -4(P/F,10,3) 3.5(P/A,10,6)
4.5(P/F,10,3) 4.5(P/F,10,6) -4
.5(P/F,10,3) 3.5(P/A,10,6) 4.5(P/F,10,6)
-4 .5(.7513) 3.5(4.3553) 4.5(.5645)
14.159 14,159
38Example NPW
5,000
3,000
B
3
6
NPW -5 3(P/A,10,6) 5(P/F,10,6)
5,000
39Example NPW
5,000
3,000
B
3
6
NPW -5 3(P/A,10,6) 5(P/F,10,6)
-5 3(4.3553) 5(.5645)
5,000
40Example NPW
5,000
3,000
B
3
6
NPW -5 3(P/A,10,6) 5(P/F,10,6)
-5 3(4.3553) 5(.5645) 10.888 10,888
5,000
41Conclusion
42EUAW
A
EUAW -4(A/P,10,3) 3.5
4.5(A/F,10,3) -4(.4021) 3.5
4.5(.3021) 3.251 3,251 Note NPW
3,251(P/A,10,6) 3,251(4.3553) 14,159
43EUAW
5,000
3,000
B
3
6
EUAW -5(A/P,10,6) 3
5(A/F,10,6) -5(.2296) 3 5(.1296)
2.500 2,500 Note NPW 2,500(P/A,10,6)
10,888
5,000
44EUAW
- Equivalent Uniform Annual Worth
- method implicitly assumes that you are
- comparing alternatives on a least
- common multiple planning horizon
- You do not need to repeat the projects to
- find the LCM if you are Annual Worth
- analysis.
45Class Problem
- Two alternatives for a recreational facility are
- being considered. Their cash flow profiles are
as - follows. Using a MARR of 10, select the
- preferred alternative.
46Class Problem
EUAWA -11(A/P,10,5) 5 -
1(A/G,10,5) -11(.2638) 5 - 1(1.8101)
.2881 288
47Class Problem
EUAWB -5(A/P,10,3) 2 1(A/G,10,3)
-5(.4021) 2 1(.9366) .9261 926
48Class Problem
EUAWB gt EUAWA Choose B
49Critical Thinking
A
Use Net Present Worth and least common multiple
of lives to compare alternatives A B.
B
50Critical Thinking
A
Use Net Present Worth and least common multiple
of lives to compare alternatives A B.
B
NPWA 288(P/A,10,15) 288(7.6061) 2,191
51Critical Thinking
A
Use Net Present Worth and least common multiple
of lives to compare alternatives A B.
NPWA 288(P/A,10,15) 288(7.6061)
2,191 NPWB 926(P/A,10,15) 926(7.6061)
7,043
B
52Incremental Analysis
- Suppose we have two investment alternatives
53Incremental Analysis
- Suppose we have two investment alternatives
IRRB gt IRRA Choose B
54Incremental Analysis
- Suppose we have two investment alternatives
IRRB gt IRRA Choose B
55Correction
Investment alternative B costs 200. If we
forego B for 100 invested in A, we have an extra
100 which can be invested at MARR. If MARR
20,
56Correction
Investment alternative B costs 200. If we
forego B for 100 invested in A, we have an extra
100 which can be invested at MARR. If MARR
20,
57Correction
IRRA gt IRRB Choose A
58Example 2
- Suppose we have 100,000 to spend and we have two
mutually exclusive investment alternatives both
of which yield returns greater than MARR 15.
59Example 2
IRRA gt IRRB Choose A
60Example 2
IRRA gt IRRB Choose A
61Example 2
106,200
A
B
60,000
1
1
50,000
90,000
NPWA -50 60(1.15)-1 2,170
NPWB -90 106.2(1.15)-1 2,350
NPWB gt NPWA Choose B
62Example 2
- Remember, we have 100,000 available in funds so
we could spend an additional 50,000 above
alternative A or an additional 10,000 above
alternative B. If we assume we can make MARR or
15 return on our money, then
63Example 2
if we invest in A, we have an extra 50,000 which
can be invested at MARR (15).
64Example 2
If we invest in B, we have an extra 10,000 which
can be invested at MARR (15).
65Example 2
IRRcB gt IRRcA Choose B
66Alternative Comparison with ROR
- Define B - A , which is a new cash flow.
- If ? iB A lt MARR, select alternative A.
- If ? iB A MARR, select B.
67Incremental Analysis
68ROR with Different Planning Horizon
- If alternatives have different planning horizon,
you need to repeat them (find the least common
multiplier).
69Differing Planning Horizons
70Differing Planning Horizons
71Example
- A company that manufactures magnetic membrane
switches is investigating two production options
that have the estimated cash flows below. (a)
Determine which option is preferable at an
interest rate of 20 per year. (b) If the options
are independent, determine which are economically
acceptable (All dollar values are in millions). - Alternative In-house
License - First Cost, 40
2 - Annual cost,/year 5
0.2 - Annual income,/year 14 6
- Salvage value, 7
__ - Life, years 10
8
72Solution
- AWIn-house -40(A/P,20,10) 5 14
7(A/F,20,10) - -40(0.23852) 9 7(0.03852)
- -0. 27116
- AWLicense - 2(0.2) -0.2 6
- -.04 5.8
- 5.4
- License is selected.
- B) Only the license option can be selected.
73Example
- The manager of a canned food processing plant is
trying - to decide between two labeling machine. Determine
- which should be selected on the basis of rate of
return - with a MARR of 20 per year.
- Alternative Machine
A Machine B - First Cost,
-15,000 -25,000 - Annual operating cost, -1,600
-400 - Salvage value, 3,000
6,000 - Life, years
3 6
74Solution
- Form cash flow for B-A
- Year A
B B-A - 0 -15,000
-25,000 -15,000 - 1 -1,600
-400 -1,200 - 2 -1,600
-400 -1,200 - 3 -1600 (3000 15,000) -400
-1,200 -12,000 - 4 -1600
-400 -1,200 - 5 -1600
-400 -1,200 - 6 -1600 3000 -400 6000
-1,200 3000 - NPW -15,000 -1,200 (P/A, i, 6) -12,000(P/F,i,
3) 3000 (P/F,i,6)0 - i26.8
-