Title: Numbers, Operations, and Quantitative Reasoning
1Numbers, Operations, andQuantitative Reasoning
2http//online.math.uh.edu/MiddleSchool
3Basic Definitions And Notation
4(No Transcript)
5(No Transcript)
6(No Transcript)
7(No Transcript)
8(No Transcript)
9(No Transcript)
10(No Transcript)
11(No Transcript)
12(No Transcript)
13Field Axioms
- Addition () Let a, b, c be real numbers
- a b b a (commutative)
- a (b c) (a b) c (associative)
- a 0 0 a a (additive identity)
- There exists a unique number ã such that
- a ã ã a 0 (additive inverse)
- ã is denoted by a
14- Multiplication () Let a, b, c be real
numbers - 1. a? b b? a (commutative)
- 2. a? (b? c) (a? b)? c (associative)
- 3. a? 1 1? a a (multiplicative identity)
- If a ? 0, then there exists a unique ã such
- that
- a? ã ã? a 1 (multiplicative inverse)
- ã is denoted by a-1 or by 1/a.
15Distributive Law Let a, b, c be real numbers.
Then a(bc) ab ac
16The Real Number SystemGeometric Representation
The Real Line
Connection one-to-one correspondence between
real numbers and points on the real line.
17Important Subsets of ?
- 1. N 1, 2, 3, 4, . . . the natural nos.
- J 0, ?1, ?2, ?3, . . . the integers.
- Q p/q p, q are integers and q? 0
- -- the rational numbers.
- 4. I the irrational numbers.
- 5. ? Q ? I
18Our Primary Focus...
19(No Transcript)
20(No Transcript)
21(No Transcript)
22S
23(No Transcript)
24(No Transcript)
25The Natural Numbers Synonyms
- The natural numbers
- The counting numbers
- The positive integers
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30(No Transcript)
31(No Transcript)
32(No Transcript)
33(No Transcript)
34(No Transcript)
35(No Transcript)
36(No Transcript)
37The Archimedean Principle
38Another proof
Suppose there is a largest natural number. That
is, suppose there is a natural number K such
that n ? K for n ? N. What can you say
about K 1 ? 1. Does K 1?? N ? 2. Is
K 1 gt K ?
39(No Transcript)
40(No Transcript)
41Mathematical Induction
Suppose S is a subset of N such that 1. 1
? S 2. If k? S, then k 1? S. Question
What can you say about S ? Is there a natural
number m that does not belong to S?
42Answer S N there does not exist a natural
number m such that m ? S. Let T be a
non-empty subset of N. Then T has a smallest
element.
43(No Transcript)
44(No Transcript)
45(No Transcript)
46(No Transcript)
47(No Transcript)
48(No Transcript)
49(No Transcript)
50(No Transcript)
51(No Transcript)
52(No Transcript)
53(No Transcript)
54Question Suppose n ? N. What does it mean to
say that d is a divisor of n ?
55Question Suppose n ? N. What does it mean to
say that d is a divisor of n ? Answer
There exists a natural number k such that
n kd
56(No Transcript)
57(No Transcript)
58(No Transcript)
59(No Transcript)
60We get multiple factorizations in terms of primes
if we allow 1 to be a prime number.
61Fermat primes
Mersenne primes
62Twin primes p, p 2
Every even integer n gt 2 can be expressed as
the sum of two (not necessarily distinct) primes
63(No Transcript)
64(No Transcript)
65For any natural number n there exist at least
n consecutive composite numbers. The prime
numbers are scarce.
66(No Transcript)
67(No Transcript)
68Fundamental Theorem of Arithmetic(Prime
Factorization Theorem)
Each composite number can be written as a product
of prime numbers in one and only one way (except
for the order of the factors).
69(No Transcript)
70Some more examples
71(No Transcript)
72(No Transcript)
73(No Transcript)
74(No Transcript)
75(No Transcript)
76(No Transcript)
77(No Transcript)
78(No Transcript)
79(No Transcript)
80(No Transcript)
81(No Transcript)
82(No Transcript)