Tut 6 Qn 5, TB Pg' 192 - PowerPoint PPT Presentation

1 / 6
About This Presentation
Title:

Tut 6 Qn 5, TB Pg' 192

Description:

Show that the verification am (aa)srr (mod p) is a valid verification procedure. Substituting, ... Substituting, r = ak (mod p) s = am kr (mod p-1) Fermat's ... – PowerPoint PPT presentation

Number of Views:47
Avg rating:3.0/5.0
Slides: 7
Provided by: vauxhalll
Category:
Tags: substituting | tut

less

Transcript and Presenter's Notes

Title: Tut 6 Qn 5, TB Pg' 192


1
Tut 6Qn 5, TB Pg. 192
  • (a).
  • Consider the signing equation s a-1(m-kr) (mod
    p-1). Show that the verification am (aa)srr
    (mod p) is a valid verification procedure.

2
  • Substituting,
  • r ak (mod p)
  • s a-1(m-kr) (mod p-1)
  • Fermats Little Theorem
  • ak mod (p-1) (mod p) ak (mod p)
  • RHS,
  • (aa)srr (mod p)
  • (aa) a-1(m-kr) (mod p-1) ak (mod p) r (mod p)
  • ((aa) a-1(m-kr) (mod p-1) ) (mod p) (akr) (mod
    p)
  • (a(m-kr) (mod p-1) ) (mod p) (akr) (mod p)
  • a(m-kr) (akr) (mod p)
  • am (mod p) LHS

3
  • (b).
  • Consider the signing equation s am kr (mod
    p-1). Show that the verification as (aa)mrr
    (mod p) is a valid verification procedure.

4
  • Substituting,
  • r ak (mod p)
  • s am kr (mod p-1)
  • Fermats Little Theorem
  • ak mod (p-1) (mod p) ak (mod p)
  • RHS,
  • (aa)mrr (mod p)
  • (aa)m ak (mod p) r (mod p)
  • aam (mod p) (akr) (mod p)
  • aam kr (mod p)
  • as (mod p) LHS

5
  • (c).
  • Consider the signing equation s ar km (mod
    p-1). Show that the verification as (aa)rrm
    (mod p) is a valid verification procedure.

6
  • Substituting,
  • r ak (mod p)
  • s ar km (mod p-1)
  • Fermats Little Theorem
  • ak mod (p-1) (mod p) ak (mod p)
  • RHS,
  • (aa)rrm (mod p)
  • aar.ak (mod p) m (mod p)
  • aar.akm (mod p)
  • aar km (mod p)
  • as (mod p) LHS
Write a Comment
User Comments (0)
About PowerShow.com