Safe Programming with Pointers through Stateful Views - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

Safe Programming with Pointers through Stateful Views

Description:

Safe Programming with Pointers through Stateful Views. 4. Motivation ... Make programming with pointers safe. e.g: x = * p : we want p not to be a dangling pointer ... – PowerPoint PPT presentation

Number of Views:25
Avg rating:3.0/5.0
Slides: 27
Provided by: Deng78
Category:

less

Transcript and Presenter's Notes

Title: Safe Programming with Pointers through Stateful Views


1
Safe Programming with Pointersthrough Stateful
Views
  • Dengping Zhu
  • Hongwei Xi
  • Boston University

2
Outline
  • Introduction
  • Programming with Stateful Views
  • Related Work and Conclusion

3
Introduction
  • Direct memory manipulation
  • Useful. E.g., Pointers in C.
  • p n pointer arithmetic
  • Dangerous. No safety guarantee.
  • Dangling pointers
  • Segmentation faults, Bus errors,
  • X (pn) // potentially out-of-bounds
  • Difficult to debug!

4
Motivation
  • Use types to enforce more safety properties
  • Make programming with pointers safe
  • e.g
  • x p we want p not to be a dangling
    pointer
  • x (p n) we want n to be within the array
    bounds
  • How to achieve this?

5
Dependent Types
  • Can capture more program properties
  • e.g
  • 5 int(5) 3 int(3)
  • Add (Int, Int) -gt Int
  • With dependent types
  • Add ?m int. ? n int. (int(m), int(n)) -gt
    int(mn)

6
Dependent Types
  • list (T, I) the type for lists of length I in
    which each element is of type T.
  • List reversal
  • a type. ? n int. list (a, n) -gt list (a, n)

7
Guarded Types
  • Type guards P
  • e.g. n gt 0
  • Guarded types P ? T
  • e.g.
  • factorial ?aint. a ? 0 ? (int(a) ? Int)
  • where Int ? ? a int. int(a) is the type for
    all integers.

8
Asserting types
  • The form P ? T
  • Example a function from non-negative integers
    to negative integers
  • ?a int. a ? 0 ? (int(a) -gt ? a int. ( a lt
    0) ? int(a))

9
Stateful Views
  • To model memory data layouts
  • Primitive views T_at_L
  • T is a type
  • L is a memory address
  • A value of type T is stored at address L
  • E.g.
  • int(5) _at_ 100 5 is stored at address 100

100
5
10
Stateful Views
  • Other stateful views are built on top of
    primitive views
  • Adjacent views (T1_at_L, T2_at_L1)
  • A value of type T1 is stored at L
  • A value of type T2 is stored at L1
  • May be written as (T1, T2) _at_ L

L
L1
T1
T2
11
Stateful Views
  • Example
  • getVar ?atype. ?laddr. (a_at_l ? ptr(l)) ? (a_at_l ?
    a)
  • Read from a pointer
  • Prevent from reading dangling pointers!
  • Address polymorphism
  • setVar ? atype. ?laddr. (top_at_l ? a, ptr(l)) ?
    (a_at_l ? 1)
  • Question how to treat recursive data structures?

12
Recursive Stateful Views
  • For instance array

arrayView (T, I, L) an array of type T
with length I is stored at address L
L
L
No Memory
No Memory
arrayView(T,0,L)
L1
L
L


T_at_L
arrayView(T,I,L1)
arrayView(T,I1,L)
13
View Change
  • A data structure can have different views.
  • How to switch? View change functions
  • e.g. split

arrayView(a,n,L)
L
Li
arrayView(a,i,L)
arrayView(a,n-i,Li)
?atype. ?nint. ?inat. ?laddr. i ? n ?
(arrayview (a, n, l) o (arrayview (a, i, l),
arrayView (a, n-i, li))
14
Outline
  • Introduction
  • Programming with Stateful Views
  • Related Work and Conclusion

15
Swap
  • swap ?t1type. ?t2type. ?l1addr. ?l2addr.
  • (t1_at_l1, t2_at_l2 ? ptr(l1), ptr(l2)) -gt (t2_at_l1,
    t1_at_l2 ? unit)

fun swap t1type, t2type, l1addr, l2addr
(pf1 t1_at_l1, pf2 t2_at_l2 ? p1 ptr(l1), p2
ptr(l2)) (t2 _at_ l1, t1 _at_ l2 ? unit)
let val (pf1 ? tmp1) getVar (pf1 ?
p1) val (pf2 ? tmp2) getVar (pf2 ?
p2) val (pf1 ? _ ) setVar (pf1 ?
tmp2, p1) val (pf2 ? _) setVar
(pf2 ? tmp1, p2) in (pf1, pf2
? ()) end
l1
l2
t1
t2
t2
t1
pf1
pf2
pf2
pf1
pf2
pf1
16
Swap
  • Certain proofs can be consumed and generated
    implicitly
  • For instance
  • fun swap t1type, t2type, l1addr, l2addr
  • (pf1 t1_at_l1, pf2 t2_at_l2 ? p1 ptr(l1), p2
    ptr(l2))
  • (t2 _at_ l1, t1 _at_ l2 ? unit)
  • let val tmp !p1 in p1 !p2 p2 tmp end

17
Array
  • dataview arrayView (type, int, addr)
  • atype, laddr ArrayNone (a, 0, l)
  • atype, nnat, laddr
  • ArraySome (a, n1, l) of (a_at_l, arrayView (a, n,
    l1))

ArrayNone ?a type. ?laddr. () o arrayView
(a, 0, l)
ArraySome ?a type. ?laddr. ? n nat.
(a_at_l, arrayView(a, n, l1)) o arrayView (a,
n1, l)
18
Array
  • getFirst (get out the first element of a nonempty
    array)
  • ?a type. ?n int. ?l addr. n gt 0 ?
  • (arrayView (a, n, l) ptr(l)) -gt (arrayView (a,
    n, l) a)
  • fun getFirst atype, nint, laddr n gt 0
  • (pf arrayView (a, n, l) p ptr(l))
  • (arrayView (a, n, l) a)
  • let
  • prval ArraySome (pf1, pf2) pf
  • val (pf1 x) getVar (pf1 p)
  • in
  • (ArraySome (pf1, pf2) x)
  • end

arrayView(a,n,l)
l
l
l1


a_at_l
arrayView(a,n-1,l1)
pf1
pf1
pf2
19
Array
  • Safe subscripting function
  • ?atype. ?n int. ?i nat. ?l addr. n gt i ?
  • ((arrayView (a, n, l) ptr(l), int(i)) ?
    (arrayView (a, n, l) a)
  • How to implement?
  • Pseudo-code for a naïve implementation
  • fun sub (p, offset)
  • if offset 0 then getFirst p
  • else sub (p1, offset 1)
  • Safe! But, O(i)-time !!!

20
Array
  • An implementation in C
  • int sub (int p, int offset) (p offset)
  • O(1)-time. But, unsafe.
  • We want O(1)-time safe
  • How to do it?

21
Array
  • View Change
  • For any 0 ? i ? n, an array of size n at address
    L can be viewed as two arrays
  • One of size i at L
  • The other of size n i at Li
  • The split function
  • The unsplit function

arrayView(a,n,L)
L
Li
arrayView(a,i,L)
arrayView(a,n-i,Li)
22
Array
  • Our implementation
  • fun sub a type, n int, i nat, l addr n gt
    i
  • (pf arrayView (a, n, l) p ptr(l), i int(i))
  • (arrayView (a, n, l) a)
  • let
  • // the following line is erased before
    execution
  • prval (pf1, pf2) split (pf)
  • val (pf2 x) getFirst (pf2 p i)
  • in
  • // unsplit is erased
  • // before execution
  • (unsplit (pf1, pf2) x)
  • end

pf
arrayView(a,n,l)
l
Li
arrayView(a,i,l)
arrayView(a,n-i,li)
pf1
pf2
pf2
23
More Examples
  • Find more on-line
  • Singly-linked lists cyclic buffer,
  • Doubly-linked lists
  • Doubly-linked binary trees splay trees,
  • Implementation is done in ATS
  • http//www.cs.bu.edu/hwxi/ATS/

24
Outline
  • Introduction
  • Programming with Stateful Views
  • Related Work and Conclusion

25
Conclusion
  • The notion of stateful views provides a general
    and flexible approach to safe programming with
    pointers
  • The need for view changes during programming
  • The use of dataviews in describing memory layouts
  • Separation between memory allocation and
    initialization

26
Some Related Work
  • Separation logic. Reynolds, 2002.
  • Shape analysis. Sagiv, Reps and Wihelm, 1998.
  • Alias types. Walker and Morrisett, 2000.
  • A type theory for memory allocation and data
    layout. Petersen, L., R. Harper, K. Crary and F.
    Pfenning, 2003.
  • Type refinements. Mandelbaum, Y., D. Walker and
    R. Harper, 2003.
  • Xanadu. H. Xi, 2000.
Write a Comment
User Comments (0)
About PowerShow.com