Title: Safe Programming with Pointers through Stateful Views
1Safe Programming with Pointersthrough Stateful
Views
- Dengping Zhu
- Hongwei Xi
- Boston University
2Outline
- Introduction
- Programming with Stateful Views
- Related Work and Conclusion
3Introduction
- Direct memory manipulation
- Useful. E.g., Pointers in C.
- p n pointer arithmetic
- Dangerous. No safety guarantee.
- Dangling pointers
- Segmentation faults, Bus errors,
- X (pn) // potentially out-of-bounds
- Difficult to debug!
4Motivation
- Use types to enforce more safety properties
- Make programming with pointers safe
- e.g
- x p we want p not to be a dangling
pointer - x (p n) we want n to be within the array
bounds - How to achieve this?
5Dependent Types
- Can capture more program properties
- e.g
- 5 int(5) 3 int(3)
- Add (Int, Int) -gt Int
- With dependent types
- Add ?m int. ? n int. (int(m), int(n)) -gt
int(mn)
6Dependent Types
- list (T, I) the type for lists of length I in
which each element is of type T. - List reversal
- a type. ? n int. list (a, n) -gt list (a, n)
-
7Guarded Types
- Type guards P
- e.g. n gt 0
- Guarded types P ? T
- e.g.
- factorial ?aint. a ? 0 ? (int(a) ? Int)
- where Int ? ? a int. int(a) is the type for
all integers.
8Asserting types
- The form P ? T
- Example a function from non-negative integers
to negative integers - ?a int. a ? 0 ? (int(a) -gt ? a int. ( a lt
0) ? int(a))
9Stateful Views
- To model memory data layouts
- Primitive views T_at_L
- T is a type
- L is a memory address
- A value of type T is stored at address L
- E.g.
- int(5) _at_ 100 5 is stored at address 100
100
5
10Stateful Views
- Other stateful views are built on top of
primitive views - Adjacent views (T1_at_L, T2_at_L1)
- A value of type T1 is stored at L
- A value of type T2 is stored at L1
- May be written as (T1, T2) _at_ L
L
L1
T1
T2
11Stateful Views
- Example
- getVar ?atype. ?laddr. (a_at_l ? ptr(l)) ? (a_at_l ?
a) - Read from a pointer
- Prevent from reading dangling pointers!
- Address polymorphism
- setVar ? atype. ?laddr. (top_at_l ? a, ptr(l)) ?
(a_at_l ? 1) - Question how to treat recursive data structures?
12Recursive Stateful Views
arrayView (T, I, L) an array of type T
with length I is stored at address L
L
L
No Memory
No Memory
arrayView(T,0,L)
L1
L
L
T_at_L
arrayView(T,I,L1)
arrayView(T,I1,L)
13View Change
- A data structure can have different views.
- How to switch? View change functions
- e.g. split
arrayView(a,n,L)
L
Li
arrayView(a,i,L)
arrayView(a,n-i,Li)
?atype. ?nint. ?inat. ?laddr. i ? n ?
(arrayview (a, n, l) o (arrayview (a, i, l),
arrayView (a, n-i, li))
14Outline
- Introduction
- Programming with Stateful Views
- Related Work and Conclusion
15Swap
- swap ?t1type. ?t2type. ?l1addr. ?l2addr.
- (t1_at_l1, t2_at_l2 ? ptr(l1), ptr(l2)) -gt (t2_at_l1,
t1_at_l2 ? unit)
fun swap t1type, t2type, l1addr, l2addr
(pf1 t1_at_l1, pf2 t2_at_l2 ? p1 ptr(l1), p2
ptr(l2)) (t2 _at_ l1, t1 _at_ l2 ? unit)
let val (pf1 ? tmp1) getVar (pf1 ?
p1) val (pf2 ? tmp2) getVar (pf2 ?
p2) val (pf1 ? _ ) setVar (pf1 ?
tmp2, p1) val (pf2 ? _) setVar
(pf2 ? tmp1, p2) in (pf1, pf2
? ()) end
l1
l2
t1
t2
t2
t1
pf1
pf2
pf2
pf1
pf2
pf1
16Swap
- Certain proofs can be consumed and generated
implicitly - For instance
- fun swap t1type, t2type, l1addr, l2addr
- (pf1 t1_at_l1, pf2 t2_at_l2 ? p1 ptr(l1), p2
ptr(l2)) - (t2 _at_ l1, t1 _at_ l2 ? unit)
- let val tmp !p1 in p1 !p2 p2 tmp end
17Array
- dataview arrayView (type, int, addr)
- atype, laddr ArrayNone (a, 0, l)
- atype, nnat, laddr
- ArraySome (a, n1, l) of (a_at_l, arrayView (a, n,
l1))
ArrayNone ?a type. ?laddr. () o arrayView
(a, 0, l)
ArraySome ?a type. ?laddr. ? n nat.
(a_at_l, arrayView(a, n, l1)) o arrayView (a,
n1, l)
18Array
- getFirst (get out the first element of a nonempty
array) - ?a type. ?n int. ?l addr. n gt 0 ?
- (arrayView (a, n, l) ptr(l)) -gt (arrayView (a,
n, l) a) - fun getFirst atype, nint, laddr n gt 0
- (pf arrayView (a, n, l) p ptr(l))
- (arrayView (a, n, l) a)
- let
- prval ArraySome (pf1, pf2) pf
- val (pf1 x) getVar (pf1 p)
- in
- (ArraySome (pf1, pf2) x)
- end
arrayView(a,n,l)
l
l
l1
a_at_l
arrayView(a,n-1,l1)
pf1
pf1
pf2
19Array
- Safe subscripting function
- ?atype. ?n int. ?i nat. ?l addr. n gt i ?
- ((arrayView (a, n, l) ptr(l), int(i)) ?
(arrayView (a, n, l) a) - How to implement?
- Pseudo-code for a naïve implementation
- fun sub (p, offset)
- if offset 0 then getFirst p
- else sub (p1, offset 1)
- Safe! But, O(i)-time !!!
20Array
- An implementation in C
- int sub (int p, int offset) (p offset)
- O(1)-time. But, unsafe.
- We want O(1)-time safe
- How to do it?
21Array
- View Change
- For any 0 ? i ? n, an array of size n at address
L can be viewed as two arrays - One of size i at L
- The other of size n i at Li
- The split function
- The unsplit function
arrayView(a,n,L)
L
Li
arrayView(a,i,L)
arrayView(a,n-i,Li)
22Array
- Our implementation
- fun sub a type, n int, i nat, l addr n gt
i - (pf arrayView (a, n, l) p ptr(l), i int(i))
- (arrayView (a, n, l) a)
- let
- // the following line is erased before
execution - prval (pf1, pf2) split (pf)
- val (pf2 x) getFirst (pf2 p i)
- in
- // unsplit is erased
- // before execution
- (unsplit (pf1, pf2) x)
- end
pf
arrayView(a,n,l)
l
Li
arrayView(a,i,l)
arrayView(a,n-i,li)
pf1
pf2
pf2
23More Examples
- Find more on-line
- Singly-linked lists cyclic buffer,
- Doubly-linked lists
- Doubly-linked binary trees splay trees,
-
- Implementation is done in ATS
- http//www.cs.bu.edu/hwxi/ATS/
24Outline
- Introduction
- Programming with Stateful Views
- Related Work and Conclusion
25Conclusion
- The notion of stateful views provides a general
and flexible approach to safe programming with
pointers - The need for view changes during programming
- The use of dataviews in describing memory layouts
- Separation between memory allocation and
initialization
26Some Related Work
- Separation logic. Reynolds, 2002.
- Shape analysis. Sagiv, Reps and Wihelm, 1998.
- Alias types. Walker and Morrisett, 2000.
- A type theory for memory allocation and data
layout. Petersen, L., R. Harper, K. Crary and F.
Pfenning, 2003. - Type refinements. Mandelbaum, Y., D. Walker and
R. Harper, 2003. - Xanadu. H. Xi, 2000.