Analytic%20Approach%20to%20Mechanism%20Design - PowerPoint PPT Presentation

About This Presentation
Title:

Analytic%20Approach%20to%20Mechanism%20Design

Description:

2. Chapter 4 - Analytic Position Analysis. A vector can be represented by a complex number ... when crank is collinear. with ground. For the extended position shown: ... – PowerPoint PPT presentation

Number of Views:55
Avg rating:3.0/5.0
Slides: 22
Provided by: bryanw89
Learn more at: http://bdml.stanford.edu
Category:

less

Transcript and Presenter's Notes

Title: Analytic%20Approach%20to%20Mechanism%20Design


1
Analytic Approach toMechanism Design
http//www.engr.colostate.edu/me/program/courses/M
E324/notes/PositionAnalysis.ppt
  • ME 324
  • Fall 2000

2
Chapter 4 -Analytic Position Analysis
ImaginaryAxis
  • A vector can be represented by a complex number
  • Real part is x-axis
  • Imaginary part is y-axis
  • Useful when we begin to take derivatives

Point A
jR sin q
RA
q
RealAxis
R cos q
3
Derivatives, Vector Rotations in the Complex Plane
Imaginary
  • Taking a derivative of a complex number will
    result in multiplication by j
  • Each multiplication by j rotates a vector 90 CCW
    in the complex plane

B
RB j R
A
C
RA
RC j2 R -R
Real
D
RD j3 R - j R
4
Labeling of Links andLink Lengths
  • Link labeling starts with ground link
  • Labeling of link lengths starts with link
    adjacent to ground link
  • Makes no sense - just go with it

Link 3, length b
B
Link 4, length c
Coupler
A
Link 2, length a
Link 1, length d
Ground Link
Pivot 02
Pivot 04
5
Angle Measurement Convention
  • All angles measured from angle of the ground link
  • Define q1 0
  • One DOF, so can describe all angles in terms of
    one input, usually q2

3
B
q3
4
A
q4
2
q2
1
q1 0
6
More on Complex Notation
  • Polar form re jq
  • Cartesian form r cosq j r sinq
  • Euler identitye jq cosq j sinq
  • Differentiation

j
q
de
j
q

je
d
q
7
The Vector Loop Technique
  • Vector loop equationR2 R3 - R4 - R1 0
  • Alternative notation RAO2 RBA - RBO4 - RO4O2
    0nomenclature - tip then tail
  • Complex notationaejq2 bejq3 - cejq4 - dejq1
    0
  • Substitute Euler equationa (cos q2j sinq2) b
    (cos q3j sinq3)- c (cos q4j sinq4) - d (cos
    q1j sinq1) 0

R3
b
B
R4
q3
A
a
q4
c
R2
q2
d
R1
O2
O4
8
Vector Loop Technique - continued
  • Separate into real and imaginary parts
  • Reala cos q2 b cos q3 - c cos q4 - d cos q1
    0
  • a cos q2 b cos q3 - c cos q4 - d 0, since
    q1 0, cos q1 1
  • Imaginary ja sin q2 jb sin q3 - jc sin q4 -
    jd sin q1 0
  • a sin q2 b sin q3 - c sin q4 0, since q1
    0, sin q1 0

9
Vector Loop Technique -continued
  • a cos q2 b cos q3 - c cos q4 - d 0
  • a sin q2 b sin q3 - c sin q4 0
  • a,b,c,d are known
  • One of the three angles is given
  • 2 unknown angles remain
  • 2 equations given above
  • Solve simultaneously for remaining angles

10
Vector Loop - Summary
  • Draw and label vector loop for mechanism
  • Write vector equations
  • Substitute Euler identity
  • Separate into real and imaginary
  • 2 equations, 2 unknown angles
  • Solve for 2 unknown angles
  • Note there will be two solutions since mechanism
    can be open or crossed

11
ExampleAnalytic Position Analysis
  • Input position q2 given
  • Solve for q3 q4

b2.14
q
?
3
a1.6
c2.06
q
?
q
51.3
d3.5
4
2
12
ExampleVector Loop Equation
  • R2 R3 - R4 - R1 0
  • aejq2 bejq3 - cejq4 - dejq1 0
  • 1.6ej51.3Þ 2.14ejq3 - 2.06ejq4 - 3.5ej0 0

R3
b2.14
R4
q
?
3
R2
c2.06
a1.6
q
?
q
51.3
d3.5
4
2
R1
13
ExampleAnalytic Position Analysis
  • aejq2 bejq3 - cejq4 - dejq1 0
  • a(cosq2jsinq2) b(cosq3jsinq3) -
    c(cosq4jsinq4) - d(cosq1jsinq1)0
  • Real part
  • a cos q2 b cos q3 - c cos q4 - d 0
  • 1.6 cos 51.3 2.14 cos q3 - 2.06 cos q4 - 3.5
    0
  • Imaginary part
  • a sin q2 b sin q3 - c sin q4 0
  • 1.6 sin 51.3 2.14 sin q3 - 2.06 sin q4 0

14
Solution Open Linkage
  • 2 equations from real imaginary equations
  • 1.6 cos 51.3 2.14 cos q3 - 2.06 cos q4 - 3.5
    0
  • 1.6 sin 51.3 2.14 sin q3 - 2.06 sin q4 0
  • 2 unknowns q3 q4
  • Solve simultaneously to yield2 solutions.
  • Open solution
  • q3 21Þ, q4 104

15
Review - Law of Cosines
2
2
2
A

B
-
C
cos
q

2
AB
q
A
é
ù
2
2
2
A

B
-
C
q

arccos
ê
ú
B
2
AB
ë
û
C
16
Transmission Angles
  • Transmission angle is the angle between the
    output angle and the coupler
  • Absolute value of the acute angle
  • Measure of quality of force transmission
  • Ideally, as close to 90 as possible

m2
180??- m2
acute
m1
180?- m1
17
Extreme Transmission Angles - Grashof Crank
Rocker
  • For a Grashof fourbar, extreme values occur
    when crank is collinear with ground
  • For the extended position shown
  • m1arccos (b2(ad) 2 - c2)/2b (ad)
  • m2180 - arccos (b2c2 - (ad)2 )/2b c

m2
c
b
a
d
m1
18
Extreme Transmission Angles - Grashof Crank
Rocker
  • For the overlapped case shown
  • m1__________________________
  • m2__________________________

m2
c
b
m1
a
d
19
Extreme Transmission Angles - Grashof Double
Rocker
  • Remember coupler makes a full revolution with
    respect to rockers
  • Transmission angle varies from 0 to 90

20
Extreme Transmission Angles - Non-Grashof Linkage
b
  • Transmission angle is zero degrees in toggle
    position output rocker coupler
  • Other transmission angle given as
  • m2__________________________
  • Similar analysis for other toggle position

m10?
m2
a
c
d
21
Calculation of Toggle Angles
  • The input angle, q2 , for the first toggle
    position given as
  • q2__________________________
  • Similar analysis for the other toggle position

b
a
c
q2
d
Write a Comment
User Comments (0)
About PowerShow.com