Title: Analytic%20Approach%20to%20Mechanism%20Design
1Analytic Approach toMechanism Design
http//www.engr.colostate.edu/me/program/courses/M
E324/notes/PositionAnalysis.ppt
2Chapter 4 -Analytic Position Analysis
ImaginaryAxis
- A vector can be represented by a complex number
- Real part is x-axis
- Imaginary part is y-axis
- Useful when we begin to take derivatives
Point A
jR sin q
RA
q
RealAxis
R cos q
3Derivatives, Vector Rotations in the Complex Plane
Imaginary
- Taking a derivative of a complex number will
result in multiplication by j - Each multiplication by j rotates a vector 90 CCW
in the complex plane
B
RB j R
A
C
RA
RC j2 R -R
Real
D
RD j3 R - j R
4Labeling of Links andLink Lengths
- Link labeling starts with ground link
- Labeling of link lengths starts with link
adjacent to ground link - Makes no sense - just go with it
Link 3, length b
B
Link 4, length c
Coupler
A
Link 2, length a
Link 1, length d
Ground Link
Pivot 02
Pivot 04
5Angle Measurement Convention
- All angles measured from angle of the ground link
- Define q1 0
- One DOF, so can describe all angles in terms of
one input, usually q2
3
B
q3
4
A
q4
2
q2
1
q1 0
6More on Complex Notation
- Polar form re jq
- Cartesian form r cosq j r sinq
- Euler identitye jq cosq j sinq
- Differentiation
j
q
de
j
q
je
d
q
7The Vector Loop Technique
- Vector loop equationR2 R3 - R4 - R1 0
- Alternative notation RAO2 RBA - RBO4 - RO4O2
0nomenclature - tip then tail - Complex notationaejq2 bejq3 - cejq4 - dejq1
0 - Substitute Euler equationa (cos q2j sinq2) b
(cos q3j sinq3)- c (cos q4j sinq4) - d (cos
q1j sinq1) 0
R3
b
B
R4
q3
A
a
q4
c
R2
q2
d
R1
O2
O4
8Vector Loop Technique - continued
- Separate into real and imaginary parts
- Reala cos q2 b cos q3 - c cos q4 - d cos q1
0 - a cos q2 b cos q3 - c cos q4 - d 0, since
q1 0, cos q1 1 - Imaginary ja sin q2 jb sin q3 - jc sin q4 -
jd sin q1 0 - a sin q2 b sin q3 - c sin q4 0, since q1
0, sin q1 0
9Vector Loop Technique -continued
- a cos q2 b cos q3 - c cos q4 - d 0
- a sin q2 b sin q3 - c sin q4 0
- a,b,c,d are known
- One of the three angles is given
- 2 unknown angles remain
- 2 equations given above
- Solve simultaneously for remaining angles
10Vector Loop - Summary
- Draw and label vector loop for mechanism
- Write vector equations
- Substitute Euler identity
- Separate into real and imaginary
- 2 equations, 2 unknown angles
- Solve for 2 unknown angles
- Note there will be two solutions since mechanism
can be open or crossed
11ExampleAnalytic Position Analysis
- Input position q2 given
- Solve for q3 q4
b2.14
q
?
3
a1.6
c2.06
q
?
q
51.3
d3.5
4
2
12ExampleVector Loop Equation
- R2 R3 - R4 - R1 0
- aejq2 bejq3 - cejq4 - dejq1 0
- 1.6ej51.3Þ 2.14ejq3 - 2.06ejq4 - 3.5ej0 0
R3
b2.14
R4
q
?
3
R2
c2.06
a1.6
q
?
q
51.3
d3.5
4
2
R1
13ExampleAnalytic Position Analysis
- aejq2 bejq3 - cejq4 - dejq1 0
- a(cosq2jsinq2) b(cosq3jsinq3) -
c(cosq4jsinq4) - d(cosq1jsinq1)0 - Real part
- a cos q2 b cos q3 - c cos q4 - d 0
- 1.6 cos 51.3 2.14 cos q3 - 2.06 cos q4 - 3.5
0 - Imaginary part
- a sin q2 b sin q3 - c sin q4 0
- 1.6 sin 51.3 2.14 sin q3 - 2.06 sin q4 0
14Solution Open Linkage
- 2 equations from real imaginary equations
- 1.6 cos 51.3 2.14 cos q3 - 2.06 cos q4 - 3.5
0 - 1.6 sin 51.3 2.14 sin q3 - 2.06 sin q4 0
- 2 unknowns q3 q4
- Solve simultaneously to yield2 solutions.
- Open solution
- q3 21Þ, q4 104
15Review - Law of Cosines
2
2
2
A
B
-
C
cos
q
2
AB
q
A
é
ù
2
2
2
A
B
-
C
q
arccos
ê
ú
B
2
AB
ë
û
C
16Transmission Angles
- Transmission angle is the angle between the
output angle and the coupler - Absolute value of the acute angle
- Measure of quality of force transmission
- Ideally, as close to 90 as possible
m2
180??- m2
acute
m1
180?- m1
17Extreme Transmission Angles - Grashof Crank
Rocker
- For a Grashof fourbar, extreme values occur
when crank is collinear with ground - For the extended position shown
- m1arccos (b2(ad) 2 - c2)/2b (ad)
- m2180 - arccos (b2c2 - (ad)2 )/2b c
m2
c
b
a
d
m1
18Extreme Transmission Angles - Grashof Crank
Rocker
- For the overlapped case shown
- m1__________________________
- m2__________________________
m2
c
b
m1
a
d
19Extreme Transmission Angles - Grashof Double
Rocker
- Remember coupler makes a full revolution with
respect to rockers - Transmission angle varies from 0 to 90
20Extreme Transmission Angles - Non-Grashof Linkage
b
- Transmission angle is zero degrees in toggle
position output rocker coupler - Other transmission angle given as
- m2__________________________
- Similar analysis for other toggle position
m10?
m2
a
c
d
21Calculation of Toggle Angles
- The input angle, q2 , for the first toggle
position given as - q2__________________________
- Similar analysis for the other toggle position
b
a
c
q2
d