Title: Decoherence in Phase Space for Markovian Quantum Open Systems
1Decoherence in Phase Spacefor Markovian Quantum
Open Systems
- Olivier Brodier1
- Alfredo M. Ozorio de Almeida2
1 M.P.I.P.K.S. Dresden 2 C.B.P.F. Rio de
Janeiro
2Plan
- Motivation quantum-classical correspondence
- Weyl Wigner formalism mapping quantum onto
classical - Markovian open quantum system, quadratic case
exact classical analogy - General case a semiclassical approach
- Conclusion analytically accessible or
numerically cheap.
3Separation time
Breakdown of correspondence in chaotic systems
Ehrenfest versus localization times Zbyszek P.
Karkuszewski, Jakub Zakrzewski, Wojciech H.
Zurek Phys. Rev. A 65, 042113 (2002)
4Separation time
Environmental effects in the quantum-classical
transition for the delta-kicked harmonic
oscillator A.R.R. Carvalho, R. L. de Matos
Filho, L. Davidovich Phys. Rev. E 70, 026211
(2004)
5Separation time and decoherence
Decoherence, Chaos, and the Correspondence
PrincipleSalman Habib, Kosuke Shizume, Wojciech
Hubert ZurekPhys.Rev.Lett. 80 (1998)
4361-4365Â
6Weyl Representation
- To map the quantum problem onto a classical
frame the phase space. - Analogous to a classical probability distribution
in phase space. - BUT W(x) can be negative!
7Wigner function
How does it look like?
p
p
q
q
8Fourier Transform
Wigner function W(x) ? Chord function ?(?)
Semiclassical origin of chord dubbing Centre ?
Chord
9Physical analogy
Small chords ? Classical features ( direct
transmission ) Large chords ? Quantum fringes (
lateral repetition pattern )
10Which System?
11Markovian Quantum Open System
- General form for the time evolution of a
reduced density operator Lindblad equation.
Reduced Density Operator
121 - simple case quadratic system
13Quadratic Hamiltonian with linear coupling to
environment Weyl representation
Centre space Fockker-Planck equation
Chord space
14Behaviour of the solution
- The Wigner function is
- Classically propagated- Coarse grained
- It becomes positive
15Analytical expression
The chord function is cut out
The Wigner function is coarse grained
With
a is a parameter related to the coupling strength
16Decoherence time / dynamics
a0.001
Elliptic case
Log
a1
Hyperbolic case
172 - semiclassical generalizationa - without
environment
18W.K.B.
Approximate solution of the Schrödinger equation
Hamilton-Jacobi
19W.K.B. in Doubled Phase Space
20Propagator for the Wigner function(Unitary case)
Reflection Operator
Time evolution
21Weyl representation of the propagator
Centre space
Centre?Centre propagator
Chord space
Centre?Chord propagator
22WKB ansatz
The Centre?Chord propagator is initially caustic
free
We infer a WKB anstaz for later time
23Hamilton Jacobi equation
Centre?Chord propagator
Stationnary phase
24Small chords limit
?
25b - with environnement
26With environment (non unitary)
In the small chords limit
Airy function
Liouville Propagation
Gaussian cut out
27Application to moments
Justifies the small chords approximation
For instance
28Results
29Conclusion
- Quadratic case transition from a quantum regime
to a purely classic one ( positivity threshold ).
Exactly solvable. - General case To be continued
- Decoherence is not uniform in phase space.
- No analytical solution but numerically
accessible results (classical runge kutta).