Influence of Antenna Pattern Distortions - PowerPoint PPT Presentation

About This Presentation
Title:

Influence of Antenna Pattern Distortions

Description:

Influence of Antenna Pattern Distortions. on Surface Current Data collected by a ... Antenna B. 40 60 80 100 120 140 160 180 200 220. 40 60 80 100 120 140 160 ... – PowerPoint PPT presentation

Number of Views:36
Avg rating:3.0/5.0
Slides: 32
Provided by: mikecr2
Category:

less

Transcript and Presenter's Notes

Title: Influence of Antenna Pattern Distortions


1
Influence of Antenna Pattern Distortions on
Surface Current Data collected by a CODAR
HF-Radar System
Josh T. Kohut Scott M. Glenn Donald E.
Barrick
2
(No Transcript)
3
Radial Velocity Map
Brant Beach Site
Brigantine Site
Moored ADCP
25 km
A
25 cm/s
4
Radial Velocity Map
Brant Beach Site
Brigantine Site
Location
Moored ADCP
  • Range
  • Bearing

25 km
A
25 cm/s
5
AntennaPatterns
6
Role of Antenna Patterns in Signal Direction
Determination
7
Role of Antenna Patterns in Signal Direction
Determination
8
Measured vs. Ideal Antenna Patterns
9
Calibration Runs
Ground Plane
Run Number
Environment
Antenna
Date
1 2.4 m Brigantine Brigantine
10/99
2 1.2 m Brigantine Brigantine
10/99
3 2.4 m Brant Beach Brant Beach
10/99
4 1.2 m Brant Beach Brant Beach
10/99
5 1.2 m Brant Beach Brant Beach
09/00
6 1.2 m Brant Beach Brigantine
09/00
10
Calibration Runs
Ground Plane
Run Number
Environment
Antenna
Date
1 2.4 m Brigantine Brigantine
10/99
2 1.2 m Brigantine Brigantine
10/99
3 2.4 m Brant Beach Brant Beach
10/99
4 1.2 m Brant Beach Brant Beach
10/99
5 1.2 m Brant Beach Brant Beach
09/00
6 1.2 m Brant Beach Brigantine
09/00
11
Measured Brant Beach Antenna Patterns
2.4 m Ground Plane
12
Brant Beach Antenna Distortions
2.4 m Ground Plane
1.2 m Ground Plane
0.5 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5
40 60 80 100 120 140 160
180 200 220
40 60 80 100 120 140 160
180 200 220
Angle (Degrees From True North)
13
Calibration Runs
Ground Plane
Run Number
Environment
Antenna
Date
1 2.4 m Brigantine Brigantine
10/99
2 1.2 m Brigantine Brigantine
10/99
3 2.4 m Brant Beach Brant Beach
10/99
4 1.2 m Brant Beach Brant Beach
10/99
5 1.2 m Brant Beach Brant Beach
09/00
6 1.2 m Brant Beach Brigantine
09/00
14
Antenna Distortions
Brant Beach, NJ
0.5 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5
40 60 80 100 120 140 160
180 200 220
Angle (Degrees From True North)
15
Calibration Runs
Ground Plane
Run Number
Environment
Antenna
Date
1 2.4 m Brigantine Brigantine
10/99
2 1.2 m Brigantine Brigantine
10/99
3 2.4 m Brant Beach Brant Beach
10/99
4 1.2 m Brant Beach Brant Beach
10/99
5 1.2 m Brant Beach Brant Beach
09/00
6 1.2 m Brant Beach Brigantine
09/00
16
Brigantine Antenna Distortions
Brigantine, NJ
0.5 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5
40 60 80 100 120 140 160
180 200 220
Angle (Degrees From True North)
17
Brant Beach Pattern Distortions
Antenna A
Antenna B
0.5 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5
40 60 80 100 120 140 160
180 200 220
40 60 80 100 120 140 160
180 200 220
Angle (Degrees From True North)
18
ADCP Comparisons
19
Radial Velocity Map
Brant Beach Site
Brigantine Site
Moored ADCP
25 km
A
25 cm/s
20
Ideal or Measured Pattern
21
ADCP and CODAR Radial Velocity Comparisons
RMS (cm/s)
R2 ()
Ground Plane
Remote Site
2.4 m Brant Beach 12.2
60
2.4 m Brant Beach 10.3
79
1.2 m Brant Beach 10.1
79
1.2 m Brant Beach 9.8
77
Ideal Patterns
Measured Patterns
22
Brant Beach Antenna Patterns
2.4 m Ground Plane
1.2 m Ground Plane
0.5 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5
A D C P
A D C P
40 60 80 100 120 140 160
180 200 220
40 60 80 100 120 140 160
180 200 220
Angle (Degrees From True North)
23
ADCP and CODAR Radial Velocity Comparisons
RMS (cm/s)
R2 ()
Ground Plane
Remote Site
2.4 m Brigantine 8.2
81
2.4 m Brigantine 7.2
90
1.2 m Brigantine 8.7
86
1.2 m Brigantine 8.9
88
Ideal Patterns
Measured Patterns
24
Brigantine Antenna Patterns
2.4 m Ground Plane
1.2 m Ground Plane
0.5 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5
A D C P
A D C P
40 60 80 100 120 140 160
180 200 220
40 60 80 100 120 140 160
180 200 220
Angle (Degrees From True North)
25
Measuredvs.Ideal
26
Radial Velocity Map
Location
  • Range
  • Bearing

27
CODAR and ADCP Radial Velocity Comparisons (2.4 m)
50 45 40 35 30 25 20 15 10 5 0
Ideal Patterns Measured Patterns
A D C P
RMS Difference (cm/s)
20 40 60 80 100 120 140
160 180 200 220
28
gt30 25 20 15 10 5 0
Spatial Difference Between Measured and Ideal
Patterns (2.4 m)
200 150 100 50 0 -50 -100 -150 -200
Relative Angle (Degrees)
RMS Difference (cm/s)
45 65 85 105 125 145
165 185 205
Reference Angle (Degrees from True North)
29
gt30 25 20 15 10 5 0
Spatial Difference Between Measured and Ideal
Patterns (1.2 m)
200 150 100 50 0 -50 -100 -150 -200
Relative Angle (Degrees)
RMS Difference (cm/s)
45 65 85 105 125 145
165 185 205
Reference Angle (Degrees from True North)
30
Conclusions
  • Hardware setup and local environment play a
    significant role in pattern distortions.
  • System accuracy improves when the measured
    pattern is used, if the measured pattern is not
    ideal.
  • If the measured pattern is not significantly
    distorted, results using either the measured or
    ideal pattern show a strong correlation to a
    moored ADCP.
  • Using the measured pattern improves system
    accuracy by more consistently placing a velocity
    vector in the correct angular bin.

31
Acknowledgements
  • Scott Glenn
  • John Fracassi
  • Sage Lichtenwalner
  • Don Barrick
  • Pete Lilliboe
  • Laura Pederson
  • Belinda Lipa
  • Liz Creed
  • Mike Crowley
  • Kristie Andreson
  • Capt. Ron
  • Capt. Joe
Write a Comment
User Comments (0)
About PowerShow.com