The Casimir Effect - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

The Casimir Effect

Description:

A purely geometric consequence of zero point energy in the quantum EM spectrum. ... This puts Mpl ~ Mew. So, V(r R) ~ r -1. But, if V(r R) ~ r (n 1) ... – PowerPoint PPT presentation

Number of Views:58
Avg rating:3.0/5.0
Slides: 17
Provided by: ecli2
Category:
Tags: casimir | effect | mew

less

Transcript and Presenter's Notes

Title: The Casimir Effect


1
The Casimir Effect
  • Consequences of a Zero Point Energy in Higher
    Dimensions
  • Eric Clinton
  • UMass/Jlab
  • WM PHYS 690-02
  • April 25,2005

2
What is the Casimir Effect?
  • A purely geometric consequence of zero point
    energy in the quantum EM spectrum.
  • Best described as the collection of Harmonic
    Oscillator Ground States in the infinite space.
  • Casimir was the first to realize the energy in
    the EM vacuum, and regularize the divergent
    integral
  • Image from hep-ph/9912276

3
How to calculate the Casimir Force
  • Imagine the EM field as an infinite set of
    Harmonic oscillators.
  • wjwk-,n c(k12 k22 (pn/a)2)½
  • The EM ZPE due to the BC and topology is --
  • Renormalizing the difference (topology- BC)
    between these two terms via an Abel-Plana contour
    integral gives us

4
How is the Casimir Force a probe of higher
dimensions?
  • Two ways
  • You can look at it from the perspective of a
    Yukawa type force that only contributes at short
    distances, or
  • A whole new ball-game, using Randall-Sundrum
    topology.
  • Each provides unique interpretations of
    experimental results.

5
Yukawa Interaction
  • Mpl is order 1015 TeV in SUSY
  • If large dimensions exist, Mpl 4n 1Tev
  • This puts Mpl Mew.
  • So, V(rgtgtR) r -1.
  • But, if V(rltR) r (n1).
  • Thus Mpl Mpl 4n R n/2 and
  • R 1030/n-17.
  • n 1, R 1013 m
  • n 2, R 1 mm
  • n 3, R 1 nm

6
More Yukawa
  • So, lets model this close range behaviour.
  • V(r)
  • Image from hep-ph/9912276

7
Randall Sundrum Space Nuances
  • There are two concepts to acknowledge when using
    RS topology.
  • We are no longer talking about LXDs, where only
    the graviton may go.
  • Universal Extra Dimensions (UXD) allow the
    propagation of all species of particles.
  • This is now the dimension we are trying to
    constrain with experiment
  • Tevatron constrains RUXD (300GeV-1) 10-9nm
  • Do theory and Casimir experiments agree with
    Tevatron?

8
Randall-Sundrum
  • Lets take RS with a S1/Z2 orbifold.
  • The frequency spectrum is modified.
  • wjwk-,n c(k12 k22 (pn/a)2 (N/R)2 )½
  • Note the extra term (N/R)2
  • Following the previous renormalization scheme, we
    get
  • Compare with

9
RS comparison-theory vs. experimentImage from
hep-th/0309066
10
AsideRadion stabilization in RS space
  • All fields in the bulk contribute Casimir fields.
  • For the radion
  • l 1/Mpl(5)
  • l (4p/3M3 l)½ is the radion
  • A Veff(f) arises, and causes a re-normalization
    of the TeV brane tension.
  • Veff(f) also has a minimum where the radion may
    live.

11
Lamoreauxs Torsion Pendulum
  • First modern Casimir experiment.
  • Sub-millimeter test
  • Timely, with respect to a burgeoning interest in
    the search for LXD
  • Drove both theory and experimental advances.
  • 0.6 mm lt d lt 0.16 mm. DF 5.
  • Image from hep-ph/9912276
  • Not quite Lamoreauxs pendulum-plate 2 was a
    feedback loop of capacitors.

12
From hep-ph/9906062
13
Atomic Force Microscopy Results
  • Bordag, Geyer, Klimchitskaya, Mostepanenko.
    1999.
  • 22 mm lt d lt 0.16 mm. DF 10-11 N.
  • Bordag, Geyer, Klimchitskaya, Mostepanenko.
    2000.
  • 5.9nm lt d lt 115 nm. DF 10-12 N.
  • Mostepanenko Novello. 2001.
  • 1.5nm lt d lt 11 nm. DF 10-9 N.
  • Chen Mohideen. 2002.
  • 80nm lt d lt 150 nm. DF 10-13 N.

14
Latest Torsion Experiment
  • Hoyle, Kapner, Heckel, Adelberger, Gundlach,
    Schmidt, Swanson. 2004.
  • 80nm lt d lt 150 nm.
  • DF 10-18.
  • Image from hep-ph/9912276

15
Some world data to date. From hep-ph/0405262
16
References
  • Bordag, Mohideen, Mostepanenko.
  • quant-ph/0106045.
  • Bordag, Geyer, Klimchitskaya, Mostepanenko.
  • hep-ph/9804223.
  • Chen Mohideen.
  • quant-ph/0209167.
  • Mostepanenko Novello.
  • hep-ph/0101306.
  • Bordag, Geyer, Klimchitskaya, Mostepanenko.
  • hep-ph/0003011.
  • Arkani-Hamed, Dimopoulos, Dvali.
  • hep-ph/9803315.
  • Roy, Lin, Mohideen.
  • hep-ph/9906062
  • Krause Fischbach.
  • hep-ph/9912276.
  • Appelquist, Cheng, Dobbresca.
  • hep-ph/0012100.
  • Hoyle, Kapner, Heckel, Adelberger, Gundlach,
    Schmidt, Swanson.
  • hep-ph/0405262
  • Bordag, Geyer, Klimchitskaya, Mostepanenko.
  • hep-ph/9902456.
  • Poppenhaeger, Hossenfelder, Hofmann, Bleicher.
  • hep-th/0309066.
  • Mostepanenko Novello.
  • hep-ph/0008035.
  • Arkani-Hamed, Dimopoulos, Dvali.
  • hep-ph/9807344.
  • Pujolàs.
  • hep-th/0103193.
  • Goldberger Rothstein.
  • hep-th/0007065.
  • Garriga Pomarol.
  • hep-th/0212227.
Write a Comment
User Comments (0)
About PowerShow.com