Title: HW
1HW 15 Thermodynamics
- READ CHAPT 12 13
- C 12
- 5,7,8,10,11,21,25
- C 13
- 14,16,20
- handout questions
2THERMODYNAMICS
- The study of utilizing heat energy to do work
3FORMS OF ENERGY
- HEAT
- INTERNAL ENERGY
- WORK
4HEAT
- Energy transferred during the random collisions
of particles - LOWEST FORM OF ENERGY
- Highest Entropy Level
- Disorganized, Difficult to Harness
5INTERNAL ENERGY (U)
- Energy contained by particles of system due to
their random motion - collective kinetic energy
6INTERNAL ENERGY (U)
KE 3/2 kBT
kB R/Na
kB Boltzmans Constant
U N (KE)
N total particles
U N (3/2 kBT)
U N (3/2 R/NAT)
U N/Na (3/2 RT)
N/Na moles n
U (3/2 nRT)
DU (3/2 nRDT)
7INTERNAL ENERGY (U)
- U 3/2 nRT
- R Universal gas law constant
- R 8.31 J/mole K
- U a NUMBER OF MOLES (n)
- U a TEMPERATURE (T)
- DU 3/2 nRDT
8HEAT ENGINE
- CONVERTS HEAT ENERGY INTO WORK
9WORK
- FORCE X DISTANCE (F x d W)
CYLINDER
d
PISTON
SYSTEM
F
(See IP simulation)
10LAWS OF THERMODYNAMICS
11Zeroth Law
- IF TWO SYSTEMS AT SAME TEMP
- THEN NO HEAT WILL FLOW
- HEAT FLOWS FROM HOT TO COLD
12THERMODYNAMIC INTERACTIONS
- HEAT (Q) CAN BE
- GAINED ()
- LOST (-)
- WORK (W) CAN BE
- DONE ON SYSTEM ()
- DONE BY SYSTEM (-)
13THERMODYNAMIC INTERACTIONS
HEAT input
Q
HEAT output
-Q
system
14WORK INPUT OR OUTPUT
WORK DONE BY -W
WORK DONE ON W
15FIRST LAW OF THERMO
DU Q W
- Q DU (- W)
- HEAT D INTERN ENERGY WORK
- CONSERVATION OF ENERGY
HEAT Q
CHANGE INTERNAL ENERGY DU
WORK(-W)
SYSTEM
16State of the System
- Pressure (P)
- P Force/Area
- N/m2 Pa (Pascals)
- Temperature (T)
- Kelvin (absolute)
- Volume (V)
- cubic meters (m3)
17HEAT ENGINE CYCLE
- A SERIES OF PROCESSES WHICH ENABLE A SYSTEM TO DO
WORK - SYSTEM RETURNS TO THE ORIGINAL STATE
- CYCLE
- P , V, T
18ISOBARIC PROCESS
PRESSURE constant
PRESSURE FORCE/AREA
P F/A
A d DV
F P A
d
WORK F d
WORK P A d
F
WORK PDV
Q
19P - V DIAGRAMISOBARIC PROCESS (P constant)
2
1
P1
W P DV
WORK AREA
P
W is -
DV
V
V1
V2
20ISOMETRIC PROCESS
VOLUME constant
WORK PDV
DV0
WORK 0
DU Q W
Q IN
DU Q
Cv molar Specific heat
DU Q ncvDT
21P - V DIAGRAMISOMETRIC PROCESS (V constant)
DV 0
W P DV
P2
2
WORK AREA 0
P
DU Q W
System gets hotter!!
Q DU
1
P1
V
V1
22ISOTHERMAL PROCESS
TEMPERATURE constant
DU 3/2 nRDT
system expands
DU 0
DU Q W
DT 0
Q IN
system
Q -W
ALL HEAT CONVERTED TO WORK
23P - V DIAGRAMISOTHERMAL PROCESS (T constant)
1
Q -W
P1
Q
P
2
P2
isotherm
AREA WORK
V
V1
V2
24ADIABATIC PROCESS
NO HEAT EXCHANGED
Q 0
DU Q W
SYSTEM EXPANDS
DU W
SYSTEM DOES WORK
Q0
System cools down
system
System gives up energy
WORK FROM INTERNAL ENERGY
25P - V DIAGRAMADIABATIC PROCESS (Q 0)
DU Q W
1
P1
WDU
DU W
P
isotherm
T hot
2
P2
T cold
AREAWORK
V
V1
V2
26Heat Engine Schematic
Hot Reservoir Thot
Q in
Engine cylinder
WORK
Q out
Cold Reservoir Tcold
27Heat Engine Efficiency
Q in Work Q out
Work Q in - Q out
Conservation of Energy
Efficiency Work / Q in
Q in - Q out
Eff W
Q in
Q in
28Heat Engine Cycle P-V Diagram
1,2 isobaric 2,3 isometric 3,4 isobaric 4,1
isometric
2
Q in
1
P
area enclosed net work
work 1,2 -
Q out
Q in
3
4
work 3,4
Q out
V
29Real Engine Cycle Otto 2-Cycle
1,2 adiabatic compression
FUEL AIR MIX
3
1,2 adiabatic 2,3 isometric 3,4 adiabatic 4,1
isometric
2,3 isometric (ignition)
Q in
4
P
2
3,4 adiabatic (power stroke)
Q out
1
V
4,1 isometric (exhaust)
30 Carnot Engine CycleIdeal Engine
- No engine operating between two temps can do
better than Carnot - For a Carnot cycle (ONLY!)
31Carnot Cycle
Isothermal Expansion Adiabatic Expansion Isotherma
l Compression Adiabatic Compression
32Carnot CycleIdeal Engine Cycle
1
Q in
2
P
T hot
4
isotherm
Q out
T cold
3
V
33Entropy (S)
DS Q/T
34Carnot Engine Cycle T-S Diagram
1,2 isothermal 2,3 adiabatic 3,4 isothermal 4,1
adiabatic
2
Q in
1
T Hot
Qin - Qout net W
HEAT 1,2 Q
T
DS Q/T
3
4
T Cold
HEAT 3,4 -Q
Adiabatic Q 0 DS 0
Q out
Entropy (S)
35Reverse Heat Engine
Heat Engine Goal
Reverse Heat Engine Goal
Work done to Pump Heat uphill
Q
Hot
Cold
REFRIDGERATOR!!!
36Reverse Heat Engine Schematic
Refridgeration Cycle
Hot Reservoir Thot
Q in
Engine cylinder
WORK
Q out
Cold Reservoir Tcold
37Reverse Carnot CycleIdeal Refridgeration Cycle
3
Q out
2
P
T hot
4
isotherm
Q in
T cold
1
V
38Molecular Model for an Ideal Gas
- http//fiscom.fcfm.buap.mx/ntnujava/
39Carnot web sites
- www.phy.ntnu.edu.tw/java/carnot/carnot.html