HW - PowerPoint PPT Presentation

1 / 39
About This Presentation
Title:

HW

Description:

ISOMETRIC PROCESS. VOLUME = constant. Q IN. WORK = PDV. DV=0. WORK = 0. DU = Q W. DU = Q ... 4,1 isometric (exhaust) BHS PHYSICS. Carnot Engine Cycle. Ideal Engine ... – PowerPoint PPT presentation

Number of Views:19
Avg rating:3.0/5.0
Slides: 40
Provided by: monroe4
Category:
Tags:

less

Transcript and Presenter's Notes

Title: HW


1
HW 15 Thermodynamics
  • READ CHAPT 12 13
  • C 12
  • 5,7,8,10,11,21,25
  • C 13
  • 14,16,20
  • handout questions

2
THERMODYNAMICS
  • The study of utilizing heat energy to do work

3
FORMS OF ENERGY
  • HEAT
  • INTERNAL ENERGY
  • WORK

4
HEAT
  • Energy transferred during the random collisions
    of particles
  • LOWEST FORM OF ENERGY
  • Highest Entropy Level
  • Disorganized, Difficult to Harness

5
INTERNAL ENERGY (U)
  • Energy contained by particles of system due to
    their random motion
  • collective kinetic energy

6
INTERNAL ENERGY (U)
KE 3/2 kBT
kB R/Na
kB Boltzmans Constant
U N (KE)
N total particles
U N (3/2 kBT)
U N (3/2 R/NAT)
U N/Na (3/2 RT)
N/Na moles n
U (3/2 nRT)
DU (3/2 nRDT)
7
INTERNAL ENERGY (U)
  • U 3/2 nRT
  • R Universal gas law constant
  • R 8.31 J/mole K
  • U a NUMBER OF MOLES (n)
  • U a TEMPERATURE (T)
  • DU 3/2 nRDT

8
HEAT ENGINE
  • CONVERTS HEAT ENERGY INTO WORK

9
WORK
  • FORCE X DISTANCE (F x d W)

CYLINDER
d
PISTON
SYSTEM
F
(See IP simulation)
10
LAWS OF THERMODYNAMICS
  • ZEROTH
  • FIRST
  • SECOND

11
Zeroth Law
  • IF TWO SYSTEMS AT SAME TEMP
  • THEN NO HEAT WILL FLOW
  • HEAT FLOWS FROM HOT TO COLD

12
THERMODYNAMIC INTERACTIONS
  • HEAT (Q) CAN BE
  • GAINED ()
  • LOST (-)
  • WORK (W) CAN BE
  • DONE ON SYSTEM ()
  • DONE BY SYSTEM (-)

13
THERMODYNAMIC INTERACTIONS
HEAT input
Q
HEAT output
-Q
system
14
WORK INPUT OR OUTPUT
WORK DONE BY -W
WORK DONE ON W
15
FIRST LAW OF THERMO
DU Q W
  • Q DU (- W)
  • HEAT D INTERN ENERGY WORK
  • CONSERVATION OF ENERGY

HEAT Q
CHANGE INTERNAL ENERGY DU
WORK(-W)
SYSTEM
16
State of the System
  • Pressure (P)
  • P Force/Area
  • N/m2 Pa (Pascals)
  • Temperature (T)
  • Kelvin (absolute)
  • Volume (V)
  • cubic meters (m3)

17
HEAT ENGINE CYCLE
  • A SERIES OF PROCESSES WHICH ENABLE A SYSTEM TO DO
    WORK
  • SYSTEM RETURNS TO THE ORIGINAL STATE
  • CYCLE
  • P , V, T

18
ISOBARIC PROCESS
PRESSURE constant
PRESSURE FORCE/AREA
P F/A
A d DV
F P A
d
WORK F d
WORK P A d
F
WORK PDV
Q
19
P - V DIAGRAMISOBARIC PROCESS (P constant)
2
1
P1
W P DV
WORK AREA
P
W is -
DV
V
V1
V2
20
ISOMETRIC PROCESS
VOLUME constant
WORK PDV
DV0
WORK 0
DU Q W
Q IN
DU Q
Cv molar Specific heat
DU Q ncvDT
21
P - V DIAGRAMISOMETRIC PROCESS (V constant)
DV 0
W P DV
P2
2
WORK AREA 0
P
DU Q W
System gets hotter!!
Q DU
1
P1
V
V1
22
ISOTHERMAL PROCESS
TEMPERATURE constant
DU 3/2 nRDT
system expands
DU 0
DU Q W
DT 0
Q IN
system
Q -W
ALL HEAT CONVERTED TO WORK
23
P - V DIAGRAMISOTHERMAL PROCESS (T constant)
1
Q -W
P1
Q
P
2
P2
isotherm
AREA WORK
V
V1
V2
24
ADIABATIC PROCESS
NO HEAT EXCHANGED
Q 0
DU Q W
SYSTEM EXPANDS
DU W
SYSTEM DOES WORK
Q0
System cools down
system
System gives up energy
WORK FROM INTERNAL ENERGY
25
P - V DIAGRAMADIABATIC PROCESS (Q 0)
DU Q W
1
P1
WDU
DU W
P
isotherm
T hot
2
P2
T cold
AREAWORK
V
V1
V2
26
Heat Engine Schematic
Hot Reservoir Thot
Q in
Engine cylinder
WORK
Q out
Cold Reservoir Tcold
27
Heat Engine Efficiency
Q in Work Q out
Work Q in - Q out
Conservation of Energy
Efficiency Work / Q in
Q in - Q out
Eff W
Q in
Q in
28
Heat Engine Cycle P-V Diagram
1,2 isobaric 2,3 isometric 3,4 isobaric 4,1
isometric
2
Q in
1
P
area enclosed net work
work 1,2 -
Q out
Q in
3
4
work 3,4
Q out
V
29
Real Engine Cycle Otto 2-Cycle
1,2 adiabatic compression
FUEL AIR MIX
3
1,2 adiabatic 2,3 isometric 3,4 adiabatic 4,1
isometric
2,3 isometric (ignition)
Q in
4
P
2
3,4 adiabatic (power stroke)
Q out
1
V
4,1 isometric (exhaust)
30
Carnot Engine CycleIdeal Engine
  • No engine operating between two temps can do
    better than Carnot
  • For a Carnot cycle (ONLY!)

31
Carnot Cycle
Isothermal Expansion Adiabatic Expansion Isotherma
l Compression Adiabatic Compression
32
Carnot CycleIdeal Engine Cycle
1
Q in
2
P
T hot
4
isotherm
Q out
T cold
3
V
33
Entropy (S)
  • randomness, disorder

DS Q/T
34
Carnot Engine Cycle T-S Diagram
1,2 isothermal 2,3 adiabatic 3,4 isothermal 4,1
adiabatic
2
Q in
1
T Hot
Qin - Qout net W
HEAT 1,2 Q
T
DS Q/T
3
4
T Cold
HEAT 3,4 -Q
Adiabatic Q 0 DS 0
Q out
Entropy (S)
35
Reverse Heat Engine
Heat Engine Goal
Reverse Heat Engine Goal
Work done to Pump Heat uphill
Q
Hot
Cold
REFRIDGERATOR!!!
36
Reverse Heat Engine Schematic
Refridgeration Cycle
Hot Reservoir Thot
Q in
Engine cylinder
WORK
Q out
Cold Reservoir Tcold
37
Reverse Carnot CycleIdeal Refridgeration Cycle
3
Q out
2
P
T hot
4
isotherm
Q in
T cold
1
V
38
Molecular Model for an Ideal Gas
  • http//fiscom.fcfm.buap.mx/ntnujava/

39
Carnot web sites
  • www.phy.ntnu.edu.tw/java/carnot/carnot.html
Write a Comment
User Comments (0)
About PowerShow.com