Title: Non-Ohmic%20dissipation%20in%20metallic%20Griffiths%20phases
1Non-Ohmic dissipation in metallic Griffiths phases
Vladimir Dobrosavljevic Department of Physics and
National High Magnetic Field Laboratory Florida
State University,USA
Funding NSF grants DMR-9974311 DMR-0234215 DMR
-0542026
Collaborators Matthew Case (FSU) Darko
Tanaskovic (FSU) Eduardo Miranda (Campinas)
REVIEW Reports on Progress in Physics 68,
23372408 (2005)
2Summary
- Historical outlook important degrees of
freedom? - Quantum Griffiths phases (QGPs) and IRFP
- Classification of QGPs symmetry and dissipation
- Magnetic vs. Electronic (Kondo) QGPs
- RKKY interactions and non-Ohmic dissipation
3Disorder and QCP The Cold War Era (1960-1990)
Long wavelength modes rule! GRIFFITHS
singularities, Harris criterion Weak disorder
corrections
4Trouble Starts (circa 1990)
Dissidents run away over the Berlin Wall
Weak coupling RG finds run away flows for QCPs
with disorder (Sachdev,...,Vojta,...)
5Quantum Griffiths phases and IRFP (1990s)
- D. Fisher (1991) new scenario for (insulating)
QCPs with disorder (Ising)
Griffiths phase (Till Huse)
Rare, dilute magnetically ordered cluster
tunnels with rate ?(L) exp-ALd
P(L) exp-?Ld P(?) ?a-1 ? Ta-1 a ?
0 at QCP (IRFP)
6General classification for single-droplet
dynamics (Vojta)
- Large droplets SEMICLASSICAL!
L
7Symmetry and dissipation (SINGLE DROPLET)
- Insulating magnets (z1) short-range
interaction (in time) - Ising at LCD tunneling rate ?(L) t? -1
exp-prLd - Heisenberg below LCD powerlaw only no QGP!
- Metallic magnets (z2) long-range 1/t2
interaction (dissipation) - Ising above LCD dissipative phase transition
- Large droplets (L gt Lc) freeze!!
(Caldeira-Leggett, i.e. K-T) - ROUNDING of QCP (Vojta)
- Heisenberg at LCD
- ?(L) t? -1 exp-prLd
- QGP ??? (single-droplet theory)
- (Vojta-Schmalian)
8Localization-induced electronic Griffiths
phase (Miranda Dobrosavljevic)
The physical picture
9Electronic Griffiths Phase metal-insulator
transition (MIT) (Tanaskovic, Dobrosavljevic,
Miranda)
EGP sets in for W gt W (pt2ravJK)1/2
EGP always comes BEFORE the MIT
MIT at W Wc EF
10RKKY-interacting droplets? (Dobrosavljevic,
Miranda)
- How RKKY affect the droplet dynamics??
random sign
- NOTE Droplet-QGP all dimensions!
- Strategy integrate-out other droplets
dSRKKYJ2 ? ?dt ?dt f(t) ?av(t-t)
f(t) ?av(?n) ?d? P(?) ?(? ?n)
?d? ?a-1 i?n ?-1 ?(0) - ?a-1
additional dissipation due to spin fluctuations
non-Ohmic (strong) dissipation for a lt 2!!
11Cluster-glass phase (foot) generic case of QGP
in metals
fluctuation-driven first-order glass
transition Matthew Case V.D.
12EGP RKKY interactions beyond semi-classical
spins! (Tanaskovic, Dobrosavljevic, Miranda)!
- Similar non-Ohmic (strong) dissipation
- Quantum (S1/2) spin dynamics (Berry phase)
- Local action Bose-Fermi (BF) Kondo model
- (E-DMFT A. Sengupta, Q. Si,..)
13 Destruction of the Kondo effect and two-fluid
behavior
- BF model has a (local) phase transition for a
sub-Ohmic dissipative bath (e gt 0 )
- EGP model distribution of Kondo
- couplings all the way to zero!
- A finite fraction of spins fall on each
- side of the critical line
- Kondo effect destroyed by dissipation
- on a finite fraction of spins
- Decoupled spins JK flows to zero they
- form a spin fluid (Sachdev-Ye)
- (frustrated insulating magnet)
14 Spin-glass (SG) instability of the EGP
- ?(T) ln(To/T) for spin fluid (decoupled spins)
- Finite (very low!!) temperature SG instability
as soon as spins decouple - Quantitative (numerical) results large N
15 Conclusions
- In metals dissipation destroys QGP at lowest T
- ? (quantum) glassy ordering
- Magnetic (QCP) QGP ? semi-classical dynamics
at T gt TG - Fluctuationdriven first-order QCP of the
cluster glass - Spin liquid in EGP at T gt TG