Title: Thermal entanglement close to a Quantum phase transition
1Thermal entanglement close to a Quantum phase
transition
Luigi AmicoMATIS INFM DMFCI Università di
Catania
Superconductivity Mesoscopics Theory
group
Materials and Technologies for Information and
communication Sciences
2- In collaboration with
- G. Falci (MATIS-DMFCI,Catania)
- R. Fazio (NEST-SNS, Pisa)
- Osterloh (ITP, Hannover)
- D. Patane (DMFCI, Catania)
3Outline
- Quantum phase transitions.
- Ising model in a trasverse field.
- Entanglement QPT
- Summary at T0
- In collaboration with G. Falci (Catania), R.
Fazio (Pisa), - A. Osterloh
(Hannover). - Thermal entanglement close to QPT In
collaboration with D. Patanè (Catania). - Acknoledgement. A Fubini.
4Phase Transitions
Thermal fluctuations
Quantum fluctuations
Es controlled by a parameter in the Hamiltonian
Universality class
5 1d-Anisotropic XY models
- Exactly solved
- Correlation functions accessible
Lieb, Schulz, Mattis Ann. Phys.NY 16, 407 (1961)
Barouch, McCoy, Dresden PRA 2, 1075 (1970)
Barouch, McCoy PRA 3, 786
(1971) Pfeuty Ann.
Phys.NY 57, 79 (1970)
6Cross-over phase diagram for the quantum Ising
models
T
T0
ac1
a
Ordered phase
Chakravarty, Halperin, Nelson 1989 Chubukov,
Sachdev, Ye (1994) Sachdev 1996 Kopp, Chakravarty
(2005)
7Aim We analize the Entanglement close to QPT
Possible questions Correlation Vs
Entanglement ?
Critical properties ?
Universality ?
Quantum computation ?
Preskill 2000 Arnesen, Bose, Vedral
2001 Gunlicke, Bose, Kendon, Vedral 2001
8Used Entanglement measures
- One-tangle
- von Neumann Entropy
- E-Tr r1 log2 r1 ? 4 det r1
Bennet et al. 1996. Coffman, Kundu,Wootters
2000. Osterloh, Siewert 2004.
C(R) maxl1- l2 - l3 - l4 ,0
are square roots of the eigenvalues of
Wootters 1998.
Pairwise entanglement
9Quantum Phase Transitions
- T0 phase transition driven by a coupling
constant ? - Correlation length diverges as x g - gc-n
?1 - log-divergence of the bipartite entanglement
?finite size scaling
Osterloh, Amico, Falci, Fazio Nature 416, 608
(2002)
10Summary at T0
- Critical change of Concurrence at the quantum
critical point - Finite size scaling
- In general NO long range Concurrence.
- Range NOT UNIVERSAL
QPT
Osterloh, Amico, Falci e Fazio, Nature (2002)
- Exsistence of a non trivial factorizing field
- Ground state factorized in the real space for
R1, g1
short ranged!
The One tangle is zero
Kurman et al., Physica A 112 (1982) Roscilde,Verru
cchi,Fubini,Haas, Tognetti 2004 Fubini,
Roscilde, Tognetti, Tusa, Verrucchi, 2005
11Value of the minimum
Must be lt -1
Position of the minimum
12Coffman-Kundu-Wootters
13Non-universal Entanglement range
asymptotics ng ? const.
1/n
14(No Transcript)
15Factorized ground state
The One tangle is zero
Kurman et al., Physica A 112 (1982) Roscilde,Verru
cchi,Fubini,Haas, Tognetti 2004 Fubini,
Roscilde, Tognetti, Tusa, Verrucchi, 2005
16T
TTcross
T0
Vidal, et al., Phys. Rev. Lett.90
(2003) Verstraete, et al. Phys. Rev. Lett
2004 Calabrese, Cardy JSTAT 2004 Its, Jin,
Korepin 2004 Roscilde et al., Phys. Rev. Lett. 93
(2004) Somma, Ortiz, Barnum, Knill, Viola 2004
a
Osterloh, Amico, Falci e Fazio, Nature 416
(2002) Osborne, Nielsen PRA 2002
17Main results at T?0
Scaling of entanglement close to the quantum
critical point Phase diagram of the
(pairwise) entanglement Entanglement
Quantum Criticality
Amico, Patanè 2005
18Critical change of the concurrence.
19Scaling of the Entanglement at finite T
R1, g1
T
Energy scale
QPT, Finite T
Sx
Dx
Data Collapse
Does the entanglement show a scaling behaviour
at finite temperature ?
a
Scaling ansatz
Raw data funct(T)
20Universality
g0.5
Data Collapse with the same critical
indices 0lt?1
21Phase diagram of the concurrence
R1
C0
g0.5
g0.3
g0.1
The parallel concurrence is suppressed by
decreasing the anisotropy
22 g0.5
R1
R3
R4
Non monotonous switch from parallel-entanglement
to antiparallel-entanglement . This is due to
certain oscillation of correlation functions
(Barouch, McCoy 1971)
23Non monotonous switch from parallel-entanglement
to antiparallel-entanglement
antiparallel
parallel
24Entanglement Vs Quantum Critical
Range Entanglement ------------------------------
--------------------------------------------------
-- Correlation lenght
Quantum Critical
g1
Sachdev, Quantum Phase Transition, (Cambridge
2000)
25How is the entanglement affected by the
combination of thermal and quantum fluctuations ?
Anomalies at the gait to the quantum critical
region
26Conclusions
? Finite temperature Scaling of
Entanglement Derivative of the concurrence
scales keeping the universal features of the
quantum Ising model
? Phase diagram of pairwise Entanglement
Reentrant behaviour of the Parallel/Antiparalle
l Entanglement
- ? Entanglement Quantum Critical matter
- Entangled droplets
- Anomalies of the pairwise entanglement at the
- cross-over temperature
27Procedimento
R
simmetrie di H
C(R)
parte puramente quantistica delle f. di
correlazione
28Concurrence
misura di entanglement per coppie di spin-1/2
29Entanglement Vs Quantum Critical
Range Entanglement ------------------------------
--------------------------------------------------
-- Lunghezza di Correlazione
g0.7
30Scaling dell Entanglement
R2, g1
31Correlazione Classica
Stato Misto
Misura di B
Stati separabili
A e B correlati classicamente