Title: GRAVITY
1GRAVITY
2(No Transcript)
3EARTHS GRAVITY FIELD
ELLIPSOID
983 Gals
978 Gals
1 Gal 1 cm/sec²
North-South change 1 mGals/km 1.5 mGals/mile 1
?Gals/m .3 ?Gals/ft
4MEASURING GRAVITYABSOLUTE VS RELATIVE
FG-5
A-10
- Absolute
- Pendulum
- Weight Drop
- Rise and Fall
Rise Fall
Weight Drop
5GRAVIMETERS
- Relative
- Stable
- Astatic
- Worden
- La Coste Romberg
- Scintrix Auto Grav
Worden Gravity Meter
6- La Coste Romberg
- Zero length spring
- T proportional L
7(No Transcript)
8(No Transcript)
9GRAVITY FIELD METHODS
- Planning a Survey
- Previous data quality and quantity targer vs
station density vs dollar. - Instrumentation and field procedures
- Acquiring permits, field preparations, low
profile - Locations
- Base ties, recoccupations, calibration, drift
tares and tides - Special considerations in microgal surveys
- Typical field procedures
- Pitfalls and disasters (ignoring the above)
10COMPUTING OBSERVED GRAVITY (MEASURED)
- CORRECT METER READINGS FOR TIDES.
- Earth Tides.
- Caused by pull of sun and moon
- Maximum change 360?Gals/6 hours 1?Gal/minute
- Correction from recording gravimeter ,
tidetables (obsolete), computer program - Computer Tide Corrections (Examples)
11SAGE 2009 TIDE CORRECTIONS
12SAGE 2004 TIDE CORRECTIONS
NOTE MAXIMUM AMPLITUDE OF 320?GALS
13COMPUTING OBSERVED GRAVITYTIDE AND DRIFT
CORRECTIONS
DRIFT CORRECTION CAUSED BY LONG TERM
RELAXATION ASSUMED TO BE SMOOTH, SLOW AND
LINEAR ESTIMATE BY REOCCUPATION OF BASE CHECK FOR
QUALITY CONTROL ON REOCC.
14SAGE 2004 TIDE CORRECTIONS
NOTE MAXIMUM AMPLITUDE OF 320?GALS
15COMPUTING OBSERVED GRAVITY
- OBSG (SCGR BCGR)GRCAL ABGV
- Where
- OBSG Observed gravity
- SCGR Station corrected meter reading
- BCGR Base corrected gravity reading
- ABGV Absolute base gravity value
- GRCAL Gravimeter calibration
16GRAVITY REDUCTION (MODEL)
ELLIPSOID
TOPO SURFACE
GEOID
- GEOID Theoretical sea level surface.
- ELLIPSOID Mathematical model of the earth
- (from satellites)
- SPHEROID Clark spheroid 1866
- (from land surveys)
GEOID HEIGHT
EARTHS SURFACE
GEOID
ELLIPSOID
17THEORETICAL GRAVITY (MODEL)
- Geodetic Reference System (GRS) formulae refer
to theoretical estimates of the Earths shape. - From these GRS formulae we obtain International
Gravity Formulae (IGF) - Several different formulae have been adopted over
the years - 1930 First internationally accepted IGF (Geoid
based) - THEOG33 978049.0(10.0052884 sin²?-0.0000059
sin² 2?) - 1967 Correction for Potsdam (Geoid based)
- THEOG67 978031.846(10.005278895
sin²?-0.000023462 sin4?) - 1984 Based on GRS 1980 World Geodetic System
(WGS84) - THEOG84 978032.67714 (10.00193185138639sin²?)
-
(?1-0.00669437999013sin²?) - Requires correction for atmosphere (ATMCR).
- ATMCR 0.87e-0.116h1.047 (SL 0.87, 5 km
0.47, 10 km 0.23 mGals)
18GRAVITY ANOMALIES MEASURED-MODEL
- Free Air Anomaly (FAAyy)
- FAAyy OBSG-THEOGyyFACu x SELEVu
- FACu Free air correction in feet or meters
- SELEVu Station elevation in feet or meters
- FACf (0.094112-0.000134sin?²-0.0000000134SELEVf)
0.09412SELEVf - FACm (0.308768-0.000440sin?²-0.0000001442SELEVm)
- SELEVf Station elevation in feet
- SELEVm Station elevation in meters
- Simple Bouguer Anomaly (SBAyy)
- SBAyy FAAyy-BSCu
- BSCu Bouguer Slab Correction in feet or meters
- BSCf (2p6.672?0.3048/1000.0)SELEVf
0.03412SELEVf - BSCm (2p6.672?/1000.0)SELEVm 0.04192SELEVm
- Note (FACu - BSCu) 0.06 mGals/ft 0.20
mGals/meter - Complete Bouguer Anomaly (CBAyy)
- CBAyy SBAyy TC
- TC Terrain Correction (usually calculated in
two parts)
19(No Transcript)
20(No Transcript)
21COMPLETE BOUGUER ANOMALIES OF THE UNITED STATES
22ISOSTATIC ANOMALIES (PRATT AIRY)
?cdensity of crust ?wdensity of sea
water ?sdensity of substratum ?hdensity of
crust mountains ?odensity of crust-oceans ?rden
sity of crust-ridge
23100 COMPENSATION
2475 COMPENSATION
250 COMPENSATION
26GEOLOGICAL CORRECTED ANOMALY
- EXAMPLES
- IMPERIAL VALLEY
- RIO GRANDE RIFT
- LOS ANGELES BASIN
27REGIONAL- RESIDUAL GRAVITY ANOMALIES
- DEFINITION
- RESIDUAL REGIONAL COMPLETE BOUGUER
- REGIONAL ANOMALY IS DETERMINE BY SCALE OF THE
TARGET. (NON UNIQUE) - SEPARATION METHODS
- LINEAR SEPARATION (PROFILE METHOD 1D)
- MAP SEPARATION (2D)
- LEAST SQUARES FIT OF GRAVITY ANOMALIES
28LINEAR SEPARATION
29MAP SEPARATION
COMPLETE BOUGUER ANOMALY
REGIONAL ANOMALY
-24
-24
-
-32
- 32
30RESIDUAL BOUGUER ANOMALY
0
5
31LEAST SQUARES FIT OF STATION GRAVITY
- PROBLEM PRODUCE A REGULAR GRID OF GRAVITY VALUES
FROM A RANDOMNLY DISTRIBUTED DATA SET.
32(No Transcript)
33GRAVITY MODELING
- DENSITY-DEPTH-RELATIONSHIP.
34GRAVITY MODELING
- VELOCITY-DENSITY RELATIONSHIP
- NAFE-DRAKE CURVE
VELOCITY km/sec
DENSITY gm/cm³
35GRAVITY MODELING
- VELOCITY-DENSITY RELATIONSHIP
36GRAVITY MODELING
LAYERED MODEL CONTINUOUS MODEL
??(h) CAN BE CONSTANT LINEAR,EXPONENTIAL, OR
HYPERBOLIC WITH DEPTH
37DENSITY-DEPTH RELATIONS
- EXPONENTIAL DENSITY-DEPTH
- ? ?max ??oe-bh
- ?? ?-?max ??oe-bh
- ?? ??o(1 - e-bH)/bh
- HYPERBOLIC DENSITY-DEPTH
- ? ??o( ß²/(hß)²) ?max
- ?? ??o ß²/(hß)²
- ?? ??o ß/(Hß)
38CALCULATING ß
- From the infinite slab formula
- ?g 2p???oßH/(H ß)
- ?g 41.92 ??oßH/(H ß)
- H - ?gß/(?g 41.92??oß)
- ß ?gH/(41.92 ??oH- ?g)
- If we know the residual anomaly (?g) at a point
and the depth of the basin (H) and the surface
density contrast (??o) we can calculate ß.
39(No Transcript)
40GRAVITY MODELING
- FORWARD INVERSE MODELING USING RESIDUAL
- SIMPLE SHAPES
- SLAB
- SPHERE
- HORIZONTAL CYLINDER
- TALWANI - BOTT (2D)
- CADY (2 ½D)
- TALWANI CORDELL BIEHLER (3D)
41GRAVITATIONAL FIELD OF A SPHERE AND CYLINDER
SPHERE
CYLINDER
Gz 4/3 p ?R3?(z/(x² z²)3/2
Gz 2p?R²?(z/x² z²)
Gmax
Gmax/2
x½
x½
Z X½
Z1.305X½
42(No Transcript)
43(No Transcript)
44(No Transcript)
45(No Transcript)
46(No Transcript)
47(No Transcript)
48REGIONAL RESIDUAL SEPARATION
49(No Transcript)
50(No Transcript)
51(No Transcript)
52(No Transcript)
53(No Transcript)
54(No Transcript)
55(No Transcript)
56(No Transcript)
57(No Transcript)