Title: Propagation of Signals Along Nonuniform Axon
1Propagation of Signals Along Non-uniform Axon
- STEPHEN CLARK
- YEVGENIY GOKUN
- HSIU-TSUN HSIEH
PRASANNA KARUNANAYAKA NAMYONG LEE MIKE MARTIN
2Todays Outline
- Neural Signal Propagation
- History, Motivation
- Disease, Pathologies
- Mathematics
- HH, FN, ML Models
- Computation
- Numerics
- Simulations
- Conjectures
- Parameter Ranges
- Biological Relevance
3Neural Dynamics
- Neural Signal Propagation
- History Motivation
- Action Potentials Dendritic Conduction
- Branching Patterns Traveling Waves
- Applications
- Disease, Amyotrophic Lateral Sclerosis (ALS)
- Myelination
- Cardiac Propagation
- Pain Mechanism
4Basic Axonal Element Propagation
- The axonal current is predominantly made up of
ionic flow (not electrons) and its direction is
not longitudinal but transverse into the cell
5Potential Concerns
- Recall,
- In squid giant axon, the principal ionic currents
used to maintain potential are that of Na and
K - We lump other ionic currents into a leakage
current - Choice of linear I-V curves for the three
different channel types is motivated largely by
experimental data. Other species may have other
I-V curves, but the results here are claimed to
be qualitatively correct all the same
6Is Something Amiss?
- We can write,
-
- where and
- Solving the above differential equation reveals a
time constant on the order of 1 msec given by - With a steady applied current, the membrane
potential should equilibrate quickly to - For sufficiently small applied currents, this is
the case however, for larger currents it is not.
Assuming the model is correct, the only
explanation is that the conductances are not
constant but instead depend on the potential.
7The Hodgkin-Huxley Equations
- The equations for the space clamped axon are
- where
8Hodgkin-Huxley Equations contd
- For the sodium and potassium channel dynamics,
Hodgkin Huxley used
Sir Bernard Katz 1911-2003 Nobel Prize 1970
PICTURE SOURCE www.nobel.se
9Hodgkin Huxley Action Potential
Simulation of the superthreshold response of the
axon to a strong depolarizing (I 10.0 mA/cm2)
current pulse of 5 msec duration.
- Four phases
- Upstroke
- Excited
- Refractory
- Recovery
10Gating During an Action Potential
Simulation of the superthreshold response of the
axon to a strong depolarizing(I 10.0 mA/cm2)
current pulse of 5 msec duration.
Na Activation
Na Inactivation
h(t)
K Activation
n(t)
m(t)
11Conductance during an Action Potential
Simulation of the superthreshold response of the
axon to a strong depolarizing (I 10.0 mA/cm2)
current pulse of 5 msec duration.
Na Conductance
gNa
K Conductance
gK
12Whos on First?
Note the small time constant for Na activation
and recall that the potential responds quickly to
a rapid Na increase
Na Activation
Na Inactivation
K Activation
tn(v)
th(v)
tm(v)
13Steady-state Functions
h8(v)
Na Activation
m8(v)
n8(v)
Na Inactivation
K Activation
ve gt vr implies h8(ve) lt h8(vr) and n8(ve) gt
n8(vr) So,while v is at the excited state, h
begins to decrease (inactivating Na
conductance), and n starts to increase
(activating the K conductance).
14Gating Symmetry
Notice the symmetry between the Na Inactivation
and the K Activation In his reduction, FitzHugh
assumed that h n 0.8
Na Activation
Na Inactivation
h(t)
K Activation
n(t)
m(t)
15Pathologies
- Neural Signal Propagation
- History Motivation
- Applications
- Cardiac propagation
- Depressed Excitability
- Echo in Purkinje Fibers
- Different diffusivity
- Not thickness, but sickness
- Disease, ALS, Myelination
- Possibly Alzheimers Parkinsons, too
16Amyotrophic Lateral Sclerosis
- Collateral sprouting in patient with ALS
- Terminal branches from a single axon innervate
several neuromuscular junctions
PICTURE SOURCE www.lougehrigsdisease.net
17Amyotrophic Lateral Sclerosis
Collateral Sprouting
PICTURE SOURCE www.lougehrigsdisease.net
18Amyotrophic Lateral Sclerosis
Terminal loss of myelin on an atrophic axon
PICTURE SOURCE www.lougehrigsdisease.net
19Amyotrophic Lateral Sclerosis
Video courtesy of Anthony Brown, OSU
- Progressive Neurodegenerative Disease
- Neurofilaments accumulate at the Nodes of Ranvier
- Related to abnormal protein folding along
cytoskeletal transport - Nodes typically larger than myelinated axon, but
more for ALS
20ALS Lou Gehrigs Disease
Lou Gehrigs Farewell Address 4 July 1939 NY, NY
Lou Gehrig 1904-1941
PICTURE SOURCE www.lougehrigsdisease.net
21Modeling Dendrities Historical background
22Cable Equation
Ohms Law
Kirchoffs Law
Discrete
Continuous
The cable equation
23LinearCable Theory
24Mathematical Modeling
- Mathematical Model Equations
- Bistable Equation
- FitzHugh-Nagumo (1961-62)
- Qualitative, but representative
- Morris-Lecar (1981)
- Physiologically motivated
- Hodgkin-Huxley (1952)
25Bistable Equation
- Traveling Wave Solution
- solution that propagates with constant shape and
velocity - Existence of Traveling Wave
26Fitzhugh-Nagumo Equation
- Existence/Uniqueness/Stability of Traveling Wave
- both pulse type transition type traveling waves
- How to construct a traveling pulse?
- Let use geometric singular
perturbation theory
27How to construct a traveling pulse?
- Let
- Find the velocity c by using the shooting
method - Find the heteroclinic orbit such that
28Singular Homoclinic Orbit
29Pieces of Singular Wave Solution
- Silent and Active Phases
- Introduce slow time scale set
- The singular solution lies along the cubic curve
- Find such that
30Singular Homoclinic Orbit
IMAGE SOURCE David Termans MBI Notes
31Why Blocking Happened (Mathematical understanding)
- Use comparison theorem
- Pauwelussen 82
Upper Solution
Traveling Wave
32Morris-Lecar Equation (1981)
- Quantitatively accurate model of
neurophysiological process - Parameters are determined from careful
experimental data - More realistic than Fitzhugh-Nagumo but has only
two independent variables accounts for specific
ion channels in barnacle muscle fiber - Existence of traveling wave solution
33The Hodgkin-Huxley Equations
- The equations for the space clamped axon are
- for the sodium and potassium channels, Hodgkin
Huxley used
34Note on Numerical Methods(Method of Lines)
- System of PDE ODEs as in F-N, M-L or H-H
- Method of Lines
- Stiffness issue stiffness of the system
35Modeling Methods Analysis
- Computation
- Numerics
- MATLAB, Mathematica, XTC
- Individual code in MATLAB Mathematica
- Available on-line via webMathematica
- XTC recommended
- XPPAUT
- sample code
- animation
- Simulations
36Modeling Methods Analysis
- Computation
- Numerics
- MATLAB, Mathematica, XTC
- Available on-line via webMathematica
- http//math.jccc.net8180/webMathematica/MSP/mmart
in/morlecar
37webMathematica output
38XPPAUT Code
- collapse5.ode more oscillators
- lewis parameters plus diffusion
- increased d to get larger wave, increased k for
sing limit, decreased d2 - param a.1,d3,d2.025,d3.025,eps.05,gamma0,i0
.08 - param p1-0.01,p20.15,p30.1,p40.145
- param gl0.5,gk2.0,gca1.0,eca1.0,ek-0.7,el-0.
5,k100.0 - i v00.2,v10.2,v20.2,v30.2,v40.21,v50.22,v60
.23,v70.24,v80.25,v90.26 - i v100.27,v110.28,v120.29,v130.3,v140.31,v15
0.32,v160.33,v170.34 - i v180.35,v190.36,v200.37,v210.38,v220.39,v23
0.4,v240.41,v250.42 - i v260.43,v270.44,v280.45,v290.46,v300.47,v31
0.48,v320.49,v330.5,v340.5 - i v350.2,v360.2,v37-.1,v38-.1
- i v39..160-.4
- i w00.3,w10.3,w20.3,w30.3,w40.29,w50.28,w60
.27,w70.26,w80.25,w90.24 - i w100.23,w110.22,w120.21,w130.2,w140.19,w15
0.18,w160.17,w170.16,w180.15 - i w190.14,w200.13,w210.12,w220.11,w230.1,w24
0.09,w250.08,w260.07 - i w270.06,w280.05,w290.04,w300.03,w310.02,w32
0.01,w330,w340,w350,w360,w370 - w38..160(0)0.1
- winft(v)0.5(1tanh((v-p3)/p4))
- minft(v)0.5(1tanh((v-p1)/p2))
wave.ani animated wave fcircle
.05.0060..150.5(vj1).011-wj end
39Outline of Fitzhugh-Nagumo Model
Type
Diagram
Parameters
Phenomena
A.
a.12134 b.121372227 c.12490008
a.1256010 b.1256013959397246 c.13084809567353
47
B.
a.1339531138011688 b.13402998 c.14690736 d8
.87047
C.
40Modeling Methods Analysis
- Computation
- Fitzhugh-Nagumo
- Case A, 1
- Par 0 lt d2 0.12134
- Result Block
41Modeling Methods Analysis
- Computation
- Fitzhugh-Nagumo
- Case A, 2
- Par1 0.12134 d2 0.12137
- Par2 0. 12137 lt d2 0.121372227
- Result Propagation
42Modeling Methods Analysis
- Computation
- Fitzhugh-Nagumo
- Case A, 3
- Par 0.121372227 lt d2 0.12490008
- Result Reflection
43Modeling Methods Analysis
- Computation
- Fitzhugh-Nagumo
- Case A, 4
- Par1 0.12490008 lt d2 0.126
- Par2 0.126 lt d2
- Result Propagation
44Modeling Methods Analysis
- Computation
- Fitzhugh-Nagumo
- Case B, 1
- Par 0 lt d2 0.1256010
- Result Block
45Modeling Methods Analysis
- Computation
- Fitzhugh-Nagumo
- Case B, 2
- Par 0.1256010 lt d2 0.1256013959397246
- Result Propagation
46Modeling Methods Analysis
- Computation
- Fitzhugh-Nagumo
- Case B, 3
- Par 0.1256013959397246 lt d2
0.1308480956735347 - Result Reflection
47Modeling Methods Analysis
- Computation
- Fitzhugh-Nagumo
- Case B, 4
- Par1 0 .1308480956735347 lt d2 0.139
- Par2 0.139lt d2
- Result Propagation
48Modeling Methods Analysis
- Computation
- Fitzhugh-Nagumo
- Case C, 1
- Par 0 lt d2 0.1339531138011688
- Result Block
49Modeling Methods Analysis
- Computation
- Fitzhugh-Nagumo
- Case C, 2
- Par1 0.1339531138011688 lt d2 0.13402997
- Par2 0. 13402997 lt d2 0.13402998
- Result Propagation
50Modeling Methods Analysis
- Computation
- Fitzhugh-Nagumo
- Case C, 3
- 0.13402998 lt d2 0.14690736
- Result Reflection
51Modeling Methods Analysis
- Computation
- Fitzhugh-Nagumo
- Case C, 4
- Par1 0.14690736 lt d2 0.1474
- Par2 0.1474 lt d2 8.867655
- Par3 8.867655 lt d2 8.87047
- Result Propagation
52Modeling Methods Analysis
- Computation
- Fitzhugh-Nagumo
- Case C, 5
- Par 8.87047 lt d2
- Result Block
53Modeling Methods Analysis
- Computation
- Morris-Lecar
- Case A
- d 0.01
- Blocking
54Modeling Methods Analysis
- Computation
- Morris-Lecar
- Case A
- d 0.015
- 0.0141 lt d lt 0.0178
- Reflection transmission
55Modeling Methods Analysis
- Computation
- Morris-Lecar
- Case A
- d 0.04
- Transmission
56Modeling Methods Analysis
- Computation
- Morris-Lecar
- Case B
- d 0.01
- 0.0141 lt d lt 0.0178
- Blocking
57Modeling Methods Analysis
- Computation
- Morris-Lecar
- Case B
- d 0.015
- 0.0141lt d lt0.0178
- Reflection transmission
58Modeling Methods Analysis
- Computation
- Morris-Lecar
- Case B
- d 0.04
- 0.0141 lt d lt 0.0179
- Transmission
59Modeling Methods Analysis
- Computation
- Morris-Lecar
- Case C
- d2 0.04
- d3 0.01
- Blocking
60Modeling Methods Analysis
- Computation
- Morris-Lecar
- Case C
- d2 0.025
- d3 0.015
- Reflection transmission
61Modeling Methods Analysis
- Computation
- Morris-Lecar
- Case C
- d2 0.04
- d3 0.015
- Reflection transmission, both
62Modeling Methods Analysis
- Computation
- Morris-Lecar
- Case C
- d2 0.025
- d3 0.025
- Reflection transmission, both
63Modeling Methods Analysis
- Computation
- Morris-Lecar
- Case C
- d2 0.015
- d3 0.025
- Reflection transmission, both
64Biological Interpretation
- Conduction of action potential
- Threshold exceeded
- Ion channel activity initiated
- Adjacent portions of membrane stimulated
- Traveling wave generated
- Effect of abrupt increase in diameter of axon
- Decrease in membrane current density ahead of
traveling wave - Greater amount of membrane to be charged
- Decrease in speed and amplitude of wave
- Delay
65Biological Interpretation
- Conduction Block
- Abrupt increase in axon diameter sufficiently
large - Insufficient current to charge the larger amount
of membrane - Echo Waves
- Abrupt increase in axon diameter
- Delay of action potential
- Encounter with refractory period for portion of
membrane - Sufficiently long to initiate depolarization of a
repolarized part
66Summary and Conclusions
- Numerical Experiments
- Bistable equation
- FitzHugh-Nagumo
- Morris-Lecar
- Phenomena Observed
- Blocking and Conduction
- Echo
- Critical values for each case
67Summary and Conclusions
- Parameter Sensitivty Echo
- Y. Zhao, J.Bell, Mathematical Biosciences, 1994
- FitzHugh-Nagumo
- R. Altenberger, et. al., J. Neuroscience Methods,
2001 - Morris-Lecar
- Hodgkin-Huxley
- Lack of traveling wave solution
68Questions and Future Problems
- Different Geometries
- Taper Axon Hillock
- Echo trap
- Hodgkin-Huxley
- Careful numerical studies
- Echo
- Mechanism for Pain
69References (1 of 2)
- R. Altenberger, K.A. Lindsay, J.M. Ogden, J.R.
Rosenberg, The interaction between membrane
kinetics and membrane geometry in the
transmission of action potentials in non-uniform
excitable fibres a finite element approach,
Journal of Neuroscience Methods. 112101117,
2001. - D.G. Aronson, H.F. Weinberger, Nonlinear
diffusion in population genetics combustion, and
nerve pulse propagation, Partial Differential
Equations and Related Topics, Lecture Notes in
Math. 446, Springer Verlag, New York, 549, 1975 - F. Bazsó, L. Zalány, G. Csárdi, Channel noise in
HodgkinHuxley model neurons, Physics Letters A,
311 1320, 2003. - Carpenter, G.A. A Geometric Approach to Singular
Perturbation Problems with Applications to Nerve
Impulse Equations. J. Diff. Eqns., 23335-367,
1977. - Ermentrout, B. Simulating, Analyzing, and
Animating Dynamical Systems A Guide to XPPAUT
for Researchers and Students, SIAM, 2002 - B. Ermentrout, J. Rinzel. Reflected waves in an
inhomogeneous excitable medium, SIAM Journal on
Appl. Math., 56411071128, 1996. - Fall, C.P., et al Computational Cell Biology,
Springer-Verlag, 2003 - T.D. Hassinger, P.B. Guthrie, P.B. Atkinson,
M.V.I. Bennett, S.B. Kater, An extracellular
signaling component in propagation of astrocytic
calcium waves, Proc. Natl. Acad. Sci. USA,
931326813273, 1996. - Hasting, S.P. On the Existence of Homoclinic and
Periodic Orbits for the Fitzhugh-Nagumo
Equations. Quart. J. Math. Oxford, 227123-134,
1976. - C.K.R.T Jones, Stability of the traveling wave
solution of the Fitzhugh-Nagumo system, Trans.
Of the Amer. Math. Soc., 2862431469, 1984.
70References (2 of 2)
- J.P. Keener, J. Sneyd. Mathematical
Physiology, Springer-Verlag, 1998 - T.J. Lewis, J.P. Keener, Wave-block in excitable
media due to regions of depressed excitability,
SIAM J. Appl. Math., 611293316, 2000 - Miller, C.C.J., et al, Axonal transport of
neurofilaments in normal and disease states,
Cell. Mol. Life Sci., 59323-330, 2002 - Murray, J.D. Mathematical Biology Vol. I,
Springer-Verlag, 2003 - J. P. Pauwelussen, Nerve impulse propagation in
a branching nerve system A simple model,
Physica 4D, 6788, 1981. - J. P. Pauwelussen, One way traffic of pulses in
a neuron, J. Math. Biology, 15151171, 1982. - F. Ramón, R.W. Joyner, J. W. Moore, Propagation
of action potentials in inhomogeneous axon
regions, Membranes Ions and Impulses, Federation
Proceedings, 34513571363, 1975. - Sajda, P. Computational Neural Modeling and
Neuroengineering, Course Notes - A. Scott, Neuroscience A Mathematical Primer,
Springer-Verlag, New York, 2002. - D. Terman, An introduction to dynamical systems
and neuronal dynamics, MBI, 2003. - L. Wang, A. Brown, Rapid Intermittent movement
of axonal neurofillaments observed by
fluorescence photobleaching, Molecular Biology
of the Cell, 12 32573267, 2001 - E. Yanagida, Stability of fast traveling pulse
solutions of the Fitzhugh-Nagumo equations, J.
Math. Biology, 2281104, 1985. - Zhou, Y., and J. Bell. Study of Propagation
Along Nonuniform Excitable Fibers. Stability of
the Travelling Wave Solution of the
Fitzhugh-Nagumo System. Mathematical
Biosciences, 119169-203, 1994.
71MBI Project Team
From left to right Hsiu-Tsun Hsieh, Prasanna
Karunanayaka, Yevgeniy Gokun, Namyong Lee, Avner
Friedman, Mike Martin, Stephen Clark
72Additional Pointers Continuing Resources
- Mike Martin
- mmartin_at_jccc.net
- http//www.jccc.net/mmartin/mbi/
mbi.osu.edu