Title: ENSO dynamics
1ENSO dynamics predictability in the GFDL
coupled models
Andrew Wittenberg NOAA/GFDL Thanks to G.
Vecchi, A. Capotondi, Q. Song, T. Rosati, T.
Reichler
2IPCC-AR4 Models
Flux Adjustment H Heat, M Momentum, W Water,
X None
3Overall Performance Index courtesy Thomas
Reichler Junsu Kim, Univ. of Utah
A combined measure of how well 21 different
global climate models simulate35 different
observed climate features (time averaged, large
scale quantities). Normalized so that the
average model score 1.0 Values less than 1.0
are better.Lower Values Smaller Errors (i.e.,
greater agreement btwn the model simulation
observations)
Avg. of 21models 1.0
4 GFDL CM2.0
1 GFDL CM2.1
4Overall Performance Index courtesy Thomas
Reichler Junsu Kim, Univ. of Utah
A combined measure of how well 21 different
global climate models simulate35 different
observed climate features (time averaged, large
scale quantities). Normalized so that the
average model score 1.0 Values less than 1.0
are better.Lower Values Smaller Errors (i.e.,
greater agreement btwn the model simulation
observations)
Error bars from bootstrapping observations
EnsembleMeann21
Avg. of 21models 1.0
Obsvs.Obs
4 GFDL CM2.0
1 GFDL CM2.1
5Planet CM2
Wittenberg et al. (J. Climate, 2006)
6Regressions onto NINO3 SSTAs
7Regressions onto NINO3 SSTAs
8CM2 lag regressions onto NINO3 SSTAs
9ENSO period vs. y-width/longitude of zonal stress
anomalies
Capotondi, Wittenberg Masina (Ocean Modelling,
2006)
corr(T, Tp) 0.82 /- 0.15
Tp 3.05 (Ly-14)/9.6 (C-184)/30
10CM2 sensitivity Cumulus Momentum Transport (CMT)
11CM2 sensitivity to AGCM resolution M45-gtM90
12CM2.3 sensitivity to parameterized convection
RAS -gt Donner
13Blocking the Indonesian Throughflow Change in
mean SST (degC)
14Blocking the Indonesian Throughflow Anomaly
patterns (regressed on NINO3)
15Approach Hybrid Coupled GCM
Partition the problem
flux climatology L(T') N(T) noise
slow
fast
1. Fit to CGCM runs, verify analogue 2. Mix
match components to isolate what matters most 3.
Can atmosphere-only runs predict CGCM
behavior? 4. Intercomparison with other CGCMs
16Partitioning the wind stress
stress F(SST) atmospheric noise
stress ltclimatologygt ltL(T')gt ltEgt
E
Many examples of this in the literature... Barnett
et al. 1993 Syu et al 1995 Eckert Latif
1997 Moore Kleeman 1999 Harrison et al.
2002 Wittenberg 2002 Zavala-Garay et al 2003,
2005
17Partitioning the wind stress
stress F(SST) atmospheric noise
stress ltclimatologygt ltL(T')gt ltEgt
E
Many examples of this in the literature... Barnett
et al. 1993 Syu et al 1995 Eckert Latif
1997 Moore Kleeman 1999 Harrison et al.
2002 Wittenberg 2002 Zavala-Garay et al 2003,
2005
18SST-forced AGCM(GFDL AM2)
19Partitioning the wind stress
stress F(SST) atmospheric noise
stress ltclimatologygt ltL(T')gt ltEgt
E
Many examples of this in the literature... Barnett
et al. 1993 Syu et al 1995 Eckert Latif
1997 Moore Kleeman 1999 Harrison et al.
2002 Wittenberg 2002 Zavala-Garay et al 2003,
2005
20Partitioning the wind stress
stress F(SST) atmospheric noise
stress ltclimatologygt ltL(T')gt ltEgt
E
Many examples of this in the literature... Barnett
et al. 1993 Syu et al 1995 Eckert Latif
1997 Moore Kleeman 1999 Harrison et al.
2002 Wittenberg 2002 Zavala-Garay et al 2003,
2005
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25E
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30Stochastic forcing A role for the Indian Ocean
Daily west-Pacific zonal stress from 10 AM2 runs
Observed SST forcing
Warm East Indian
31Summary of greenhouse tropics in CM2.x
- 1) SST warms 3-4C loosely El Niño-like
- - Pacific trade winds ITCZs more y-symmetric
- 2) More clouds, evaporation, ocean-dynamical
cooling - - compensate for reduced longwave cooling at
surface - 3) Sharper/shallower thermocline halocline
- - shallower ocean circulation weaker surface
winds/currents - 4) Stronger annual cycles of SST rainfall
- - more ocean-dynamical cooling atm moisture
convergence - 5) ENSO amplifies slightly
- - enhanced wind stress coupling heat flux
damping - 6) Model biases -gt uncertainty
32IPCC AR4 intercomparisons
- 1) GFDL CM2.0/2.1 ENSOs among top 4 (of 23
models) - - nice spectrum, zonal propagation, coupling
strengths - 2) Most models show loosely El Nino-like warming
- - dT/dy change more robust than dT/dx
- - more stratified ocean atmosphere
- - weaker atmospheric circulation trumps upwelling
thermostat - - eastward shift of warm pool convection
- 3) Diverse changes in ENSO spectrum/pattern
- - hard to detect in short records
- - increased damping opposes increased coupling
- - "best" models show more amplification, eastward
propagation
Guilyardi (Climate Dyn. 2005) van Oldenborgh et
al. (Ocean Sci. 2005) Philip van Oldenborgh
(subm. GRL 2006)
Merryfield (JC in press, 2005) Liu et al. (JC
2005) Tanaka et al. (SOLA 2005)
Collins (Clim. Dyn. 2005) Jin et al. (GRL 2001)
33Annual mean surface changes in CM2.0
34Annual mean surface changes in CM2.0
35Annual mean subsurface changes in CM2.0
36Future mean state resembles El Nino, except
- 1) Evaporation increases more broadly
- - especially off-equator where winds are strong,
SST is warm - - reduces further off-equatorial warming of SST
- 2) More PBL moisture, reduced lapse rate
- - increases static stability of atmosphere -gt
circulation slows - 3) Ocean warms from above
- - by heat fluxes, not upwelling and not just at
equator - 4) Ocean more stratified
- - mixed layer ocean circulation shoal
- - enhanced warming near equator where dT/dz is
strong - 5) Surface ocean equilibrated all seasons
affected
Knutson Manabe (JC 1994, 1995, 1998)
Collins (GRL 2000) Vecchi et al. (Nature
subm.)
37ENSO changes in CM2.0 CM2.1
38ENSO rainfall changes in CM2.0 CM2.1
39Spectral changes in CM2.0 CM2.1
40ENSO atmospheric response
CM2.0
CM2.1
41ENSO surface heat fluxes along the equator
CM2.0
CM2.1
42Changes in intraseasonal variability
43CM2 sensitivity Cumulus Momentum Transport (CMT)
44CM2.1 Natural modulation of ENSO
45Mixed layer temperature anomaly tendency equation
Key to understanding impact of background state
on ENSO.
46(No Transcript)
47(No Transcript)
48Observational Fields
- IPCC-AR4 intercomparison 35 variables
- IPCC-AR4 CMIP intercomparison15 variables
- Problem of missing fields.
- BCCM eliminated.