Title: Kern und Teilchenphysik 2
1Kern- und Teilchenphysik 2
Vorlesung 3
- EM Wechselwirkung
- invarianter WQ
- Feynman-Diagramme
TU Berlin, Konrad Czerski, SS2008
2Dirac-Gleichung mit EM-Feld
Viererpotential
Impuls
Dirac-Gleichung
Für ein Elektron Pauli-Gleichung (n.rel.)
gyromagnetisches Verhältnis
g 2
3Magnetisches Moment
4Fermis goldene Regel
Übergangswahrscheinlichkeit
wobei
Übergangsmatrixelement
Endzustandsdichte
Wirkungsquerschnitt
phase space
Fluss der einfallenden Teilchen
5Relativistische Effekte
für die Teilchendichte
Lorentz invariant space phase
6Feynman-Diagramme
7Richard Feynman
(Baron) Ernest Stückelberg
von Breidenbach zu Breidenstein und Melsbach
8e
e
p1
p3
e
e
p1
p3
q
q
p2
p4
e-
e-
p2
p4
e-
e-
Leading order diagrams for Bhabha Scattering
e e? ? e e?
Some Rules for the Construction Interpretation
of Feynman Diagrams
- Energy momentum are conserved at each vertex
- Charge is conserved
- Straight lines with arrows pointing towards
increasing time represent fermions. Those
pointing backwards in time represent
anti-fermions - Broken, wavy or curly lines represent bosons
- External lines (one end free) represent real
particles - Internal lines generally represent virtual
particles
9e
e
p1
p3
e
e
p1
p3
q
q
p2
p4
e-
e-
p2
p4
e-
e-
Leading order diagrams for Bhabha Scattering
e e? ? e e?
Some Rules for the Construction Interpretation
of Feynman Diagrams
- Time ordering of internal lines is unobservable
and, quantum mechanically, all
possibilities must be summed together. However,
by convention, only one unordered diagram is
actually drawn - Incoming/outgoing particles typically have their
4-momenta labelled as pn and internal lines as
qn - Associate each vertex with the square root of
the appropriate coupling constant, ??x
, so when the amplitude is squared to yield a
cross-section, there will be a factor of ?xn ,
where n is the number of vertices (also known as
the ''order" of the diagram)
10e
e
p1
p3
e
e
p1
p3
q
q
p2
p4
e-
e-
p2
p4
e-
e-
Leading order diagrams for Bhabha Scattering
e e? ? e e?
Some Rules for the Construction Interpretation
of Feynman Diagrams
- Associate an appropriate propagator of the
general form 1/(q2 M2) with each internal
line, where M is the mass of mediating boson - Source vertices of indistinguishable particles
may be re-associated to form new diagrams
(often implied) which are added to the sum
Thus, the leading order diagrams for pair
annihilation ( e- e ? ? ??) are
11Photon-Austausch
Übergangsmatrixelement
t
Strom-Strom-Kopplung
wobei
x
12Austausch massiver Teilchen
Propagator
Beispiel Elektron-Positron-Vernichtung
auslaufendes Photon
- Polarisation
13Gleiche Teilchen Vertauschungssymmetrie
zwei Amplituden
Bosonen
-
Fermionen
14Teilchen-Antiteilchen-Symmetrie
Die Matrixelemente haben eine Symmetrie gegen
eine Teilchen-Antiteilchen-Vertauschung
(Crossing-Symmetrie)
Prozesse
e- ?- ? e- ?-
e- e ? ? ?-
Durch die Substitution
p2 ? -k3 , u(p2) ? v(k3) p3 ? -k2, u(p3) ? v(k2)
15Vakuum-Polarisation
Thus, we never actually ever see a ''bare"
charge, only an effective charge shielded by
polarized virtual electron/positron pairs. A
larger charge (or, equivalently, ?) will be seen
in interactions involving a high momemtum
transfer as they probe closer to the central
charge.
?????????? ''running coupling constant"
In QED, the bare charge of an electron is
actually infinite !!!
16Renormalisation
At large q the product of the propagators will
go as 1/q4
? logarithmically divergent !!