Kern und Teilchenphysik 2 - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

Kern und Teilchenphysik 2

Description:

Kern- und Teilchenphysik 2. TU Berlin, Konrad Czerski, SS2008. EM ... Fermi's goldene Regel. wobei. bergangsmatrixelement. bergangswahrscheinlichkeit ... – PowerPoint PPT presentation

Number of Views:116
Avg rating:3.0/5.0
Slides: 17
Provided by: ourva1
Category:

less

Transcript and Presenter's Notes

Title: Kern und Teilchenphysik 2


1
Kern- und Teilchenphysik 2
Vorlesung 3
  • EM Wechselwirkung
  • invarianter WQ
  • Feynman-Diagramme

TU Berlin, Konrad Czerski, SS2008
2
Dirac-Gleichung mit EM-Feld
Viererpotential
Impuls
Dirac-Gleichung
Für ein Elektron Pauli-Gleichung (n.rel.)
gyromagnetisches Verhältnis
g 2
3
Magnetisches Moment
4
Fermis goldene Regel
Übergangswahrscheinlichkeit
wobei
Übergangsmatrixelement
Endzustandsdichte
Wirkungsquerschnitt
phase space
Fluss der einfallenden Teilchen
5
Relativistische Effekte
für die Teilchendichte
Lorentz invariant space phase
6
Feynman-Diagramme
7
Richard Feynman
(Baron) Ernest Stückelberg
von Breidenbach zu Breidenstein und Melsbach
8
e
e
p1
p3
e
e
p1
p3
q
q
p2
p4
e-
e-
p2
p4
e-
e-
Leading order diagrams for Bhabha Scattering
e e? ? e e?
Some Rules for the Construction Interpretation
of Feynman Diagrams
  • Energy momentum are conserved at each vertex
  • Charge is conserved
  • Straight lines with arrows pointing towards
    increasing time represent fermions. Those
    pointing backwards in time represent
    anti-fermions
  • Broken, wavy or curly lines represent bosons
  • External lines (one end free) represent real
    particles
  • Internal lines generally represent virtual
    particles

9
e
e
p1
p3
e
e
p1
p3
q
q
p2
p4
e-
e-
p2
p4
e-
e-
Leading order diagrams for Bhabha Scattering
e e? ? e e?
Some Rules for the Construction Interpretation
of Feynman Diagrams
  • Time ordering of internal lines is unobservable
    and, quantum mechanically, all
    possibilities must be summed together. However,
    by convention, only one unordered diagram is
    actually drawn
  • Incoming/outgoing particles typically have their
    4-momenta labelled as pn and internal lines as
    qn
  • Associate each vertex with the square root of
    the appropriate coupling constant, ??x
    , so when the amplitude is squared to yield a
    cross-section, there will be a factor of ?xn ,
    where n is the number of vertices (also known as
    the ''order" of the diagram)

10
e
e
p1
p3
e
e
p1
p3
q
q
p2
p4
e-
e-
p2
p4
e-
e-
Leading order diagrams for Bhabha Scattering
e e? ? e e?
Some Rules for the Construction Interpretation
of Feynman Diagrams
  • Associate an appropriate propagator of the
    general form 1/(q2 M2) with each internal
    line, where M is the mass of mediating boson
  • Source vertices of indistinguishable particles
    may be re-associated to form new diagrams
    (often implied) which are added to the sum

Thus, the leading order diagrams for pair
annihilation ( e- e ? ? ??) are
11
Photon-Austausch
Übergangsmatrixelement
t
Strom-Strom-Kopplung
wobei
x
12
Austausch massiver Teilchen
Propagator
Beispiel Elektron-Positron-Vernichtung
auslaufendes Photon
- Polarisation
13
Gleiche Teilchen Vertauschungssymmetrie
zwei Amplituden

Bosonen
-
Fermionen
14
Teilchen-Antiteilchen-Symmetrie
Die Matrixelemente haben eine Symmetrie gegen
eine Teilchen-Antiteilchen-Vertauschung
(Crossing-Symmetrie)
Prozesse
e- ?- ? e- ?-
e- e ? ? ?-
Durch die Substitution
p2 ? -k3 , u(p2) ? v(k3) p3 ? -k2, u(p3) ? v(k2)
15
Vakuum-Polarisation
Thus, we never actually ever see a ''bare"
charge, only an effective charge shielded by
polarized virtual electron/positron pairs. A
larger charge (or, equivalently, ?) will be seen
in interactions involving a high momemtum
transfer as they probe closer to the central
charge.
?????????? ''running coupling constant"
In QED, the bare charge of an electron is
actually infinite !!!
16
Renormalisation
At large q the product of the propagators will
go as 1/q4
? logarithmically divergent !!
Write a Comment
User Comments (0)
About PowerShow.com