Title: TT Equation by Joby John
1Probing TT Equation to the Truth Table Method
A Study on Symbolic Logic
Academic Paper Submitted to Rev Dr Henry D
Almeida, SJ Faculty of Philosophy Head of the
Department Indian Studies Jnana- Deepa
Vidyapeeth Pune
- Submitted by
- Joby John
- NHMS
- II Year Philosophy (Exceptional)
- Jnana- Deepa Vidyapeeth
- Roll No. 17073
- jobykeelath_at_gmail.com
- Mobile9400821853
2Truth Table
P q p q p?q p v q p?q pq
T T F F T T T T
T F F T F T F F
F T T F F T T F
F F T T F F T T
3TT EquationTwo Methods
Method1
Method2
TT Numerical Description
4Method1TT Symbolic Description
Conversion of propositions to symbolic logical
form. Like p?(p?q)
5Method1TT Symbolic Description
Find out the total number propositional variables
(eg. p,q,r,s etc.). p?(p?q) Here we have two
propositional variables
1
2
6Method1TT Symbolic Description
Convert the variable to TT Equation
If variable negative E.g. p, q, r
If variable positive E.g. p, q,r
7Method1TT Symbolic Description
- Step 3 Convert the variable to TT Equation
Total number of propositional variables(n)
8Method1TT Symbolic Description
- Step 3 Convert the variable to TT Equation
Individual number of the variable(x)
x Individual number of the variable(x) Individual number of the variable(x) Individual number of the variable(x) Individual number of the variable(x) Individual number of the variable(x)
x p q r s t
x 1 2 3 4 5
9Method1TT Symbolic Description
- Step 3 Convert the variable to TT Equation
Individual number of the variable(x)
10Method1TT Symbolic Description
- Step 3 Convert the variable to TT Equation
Multiply T and F according to this number
E.g. 21 (T,F) 2(T,F) 2T, 2F
11Method1TT Symbolic Description
- Step 3 Convert the variable to TT Equation
Repeat the figures in the bracket according to
this number
Instead of writing this lengthy result just keep
the conversion like this 2(T,F)4
E.g. 21 (T,F)22 2(T,F)4 (2T, 2F) (2T, 2F)
(2T, 2F) (2T, 2F)
12Method1TT Symbolic Description
- Step 3Convert the variable to TT Equation
1
2
Here we have two positive variables So n2 X
(For P-1 and for Q-2)
p?(p?q)
p 22-1(T,F)21-1 2(T,F) (2T,2F)
q 22-2(T,F)22-1 (T,F)2 (T,F) (T,F)
13Method1TT Symbolic Description
- Step 3Convert the variable to TT Equation
p ? (p?q)
The final conversion symbol is put in the squire
brackets ?
(2T,2F) ? (2T,2F) ? (T,F)2
14Method1TT Symbolic Description
Evaluate each combination by using TT Equation
Table
TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
(2T,2F) ? (2T,2F) ? (T,F)2
15Method1TT Symbolic Description
- Step4Evaluate each combination by using TT
Equation Table
TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
T?T T
(2T,2F) ? (2T,2F) ? (T,F)2
16Method1TT Symbolic Description
- Step4Evaluate each combination by using TT
Equation Table
TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
T?F F
(2T,2F) ? (2T,2F) ? (T,F)2
17Method1TT Symbolic Description
- Step4Evaluate each combination by using TT
Equation Table
TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
F?T T
(2T,2F) ? (2T,2F) ? (T,F)2
18Method1TT Symbolic Description
- Step4Evaluate each combination by using TT
Equation Table
TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
F?F F
(2T,2F) ? (2T,2F) ? (T,F)2
19Method1TT Symbolic Description
- Step4Evaluate each combination by using TT
Equation Table
TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
T,F
2T
(2T,2F) ? (2T,2F) ? (T,F)2
20Method1TT Symbolic Description
- Step4Evaluate each combination by using TT
Equation Table
TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
T,F
2T
(2T,2F) ? (2T,2F) ? (T,F)2
21Method1TT Symbolic Description
- Step4Evaluate each combination by using TT
Equation Table
TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
2T
T,F
(2T,2F) ? (2T,2F) ? (T,F)2
22Method1TT Symbolic Description
- Step4Evaluate each combination by using TT
Equation Table
TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
(2T,2F) ? (2T,2F) ? (T,F)2
2T
T,F
23Method1TT Symbolic Description
- Step4Evaluate each combination by using TT
Equation Table
TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
T,F
(2T,2F) ? (T,F ,2T)
T T
24Method1TT Symbolic Description
- Step4Evaluate each combination by using TT
Equation Table
TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
T,F
T T
25Method1TT Symbolic Description
- Step4Evaluate each combination by using TT
Equation Table
Contingent INVALID
(T,F ,2T)
p ? (p ? q)
T T T T T
T F T F F
F T F T T
F T F T F
26Method1TT Symbolic Description
(T,F ,2T)
- Step5The final string (TT Equation Validity)of
the evaluation will be same as the final result
of Truth Table. - Step6Evaluation result will be described as same
as Truth Table (i.e. F and T combination will be
Contingent, Total F will be Contradictory and
Total T will be Tautology). - StepPracticing TT Equation enables us to examine
the validity of lengthy symbolic representation
of the propositions.
27Method2TT Numerical Description
- Conversion of propositions to symbolic logical
form. - Find out the total number propositional variables
(eg. p,q,r,s etc.). - Convert the variable to TT Equation.
- Form the TT Symbolic Description.
- Convert the TT Symbolic Description to TT
Numerical Description by using TTND Conversion
Table1and2. - The final string (TT Equation Validity) of the
evaluation will be same as the final result of
Truth Table. The TT Equation Validity will be
based on TT Numerical Evaluation Table. - Evaluation result will be described as same as
Truth Table (i.e. -1 and 1 combination will be
Contingent, Total -1 will be Contradictory and
Total 1 will be Tautology).
28Method2TT Numerical Description
TTND Conversion Table-1 TTND Conversion Table-1 TTND Conversion Table-1 TTND Conversion Table-1
TTSD Value Symbol TTND Conversion Equations ( x1and y -1) Conversion Value of equation
TT ? v ? T
FF ? v F
FF ? T
TF ? ? F
TF v T
FT ? F
FT v ? T
TTND Conversion Table-2 TTND Conversion Table-2 TTND Conversion Table-2
? 1 ? 1 1 All other combinations -1
1 1 1 All other combinations -1
-1 -1 1 All other combinations -1
v -1 v -1 -1 All other combinations 1
? 1 ? -1 -1 All other combinations 1
29Method2TT Numerical Description
TT Numerical Evaluation Table TT Numerical Evaluation Table TT Numerical Evaluation Table TT Numerical Evaluation Table
Value Result T,F representation Value of the result
Tautology 1,1 T,T T
Contradictory -1, -1 F,F F
Contingent -1, 1 / 1, -1 TF/FT F
30Method2TT Numerical Description
31Method2TT Numerical Description
Rewriting 2T2F ?(2T2F?(TF, TF)
(1, -1) ?(1, -1?-1,-1 )
32Method2TT Numerical Description
TTND Conversion Table-2 TTND Conversion Table-2 TTND Conversion Table-2
? 1 ? 1 1 All other combinations -1
1 1 1 All other combinations -1
-1 -1 1 All other combinations -1
v -1 v -1 -1 All other combinations 1
? 1 ? -1 -1 All other combinations 1
Rewriting 2T2F ?(2T2F?(TF, TF)
-1
1
(1, -1) ?(1, -1?-1,-1 )
(1, -1) ?(-1, 1)
33Method2TT Numerical Description
TTND Conversion Table-2 TTND Conversion Table-2 TTND Conversion Table-2
? 1 ? 1 1 All other combinations -1
1 1 1 All other combinations -1
-1 -1 1 All other combinations -1
v -1 v -1 -1 All other combinations 1
? 1 ? -1 -1 All other combinations 1
Rewriting 2T2F ?(2T2F?(TF, TF)
-1
1
(1, -1) ?(-1, 1)
-1 1
34Method2TT Numerical Description
TT Numerical Evaluation Table TT Numerical Evaluation Table TT Numerical Evaluation Table TT Numerical Evaluation Table
Value Result T,F representation Value of the result
Tautology 1,1 T,T T
Contradictory -1, -1 F,F F
Contingent -1, 1 / 1, -1 TF/FT F
Rewriting 2T2F ?(2T2F?(TF, TF)
-1, 1
Contingent INVALID
35Example Method1-TTSD
- (p ?q) ?(q ?r) ?(r ?s) ? (p ?s)
(8F,8T)?(4T,4F)2) ?((4T,4F)2?(2T,2F)4)
?((2F,2T)4? (T,F)8) ? ((8F,8T)?(T,F)8)
Conversion P (8T,8F) P (8F,8T) Q(4T,4F)2 R
(2T,2F)4 R (2F,2T)4 S (T,F)8
(8T,4T,4F)?((2T,2F,4T)2) ?((3T,F)4 ?
(8T),(T,F)4
(2T,2F,4T,2T,2F,4F)?(3T,F)4 ? (8T),(T,F)4
(2T,2F,3T,F,2T,6F) ? (8F,(F,T)4
(2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent
INVALID!
36No (p ? q) ? (q ? r) ? (r ? s) ? ? (p ? s)
1 F T T T T T T T F T T F 2F F F T T
2 F T T T T T T T F T F F 2F F F T F
3 F T T F T F F F T T T T 2T F F T T
4 F T T F T F F F T F F T 2T F F T F
5 F T F T F T T T F T T F 3F F F T T
6 F T F T F T T T F T F F 3F F F T F
7 F T F T F T F T T T T F 3F F F T T
8 F T F T F T F F T F F T 1T F F T F
9 T T T T T T T T F T T F 1F F T T T
10 T T T T T T T T F T F T 7T T T F F
11 T T T F T F F F T T T T 7T F T T T
12 T T T F T F F F T F F T 7T T T F F
13 T F F F F T T F F T T T 7T F T T T
14 T F F F F T T F F T F T 7T T T F F
15 T F F F F T F F T T T T 7T F T T T
16 T F F F F T F F T F F T 7T T T F F
(2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID! (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!
37Example Method2-TTND
- (p ?q) ?(q ?r) ?(r ?s) ? (p ?s)
(8F,8T)?(4T,4F)2) ?((4T,4F)2?(2T,2F)4)
?((2F,2T)4? (T,F)8) ? ((8F,8T)?(T,F)8)
(-8,8)?(4,-4)2) ?((4,-4)2?(2,-2)4) ?((-2,2)4?
(1,-1)8) ? ((-8,8)?(1,-1)8)
(8,4,-4)?((2,-2,4)2) ?((3,-1)4 ? (8),(1,-1)4
Conversion P (8T,8F) P (8F,8T) Q(4T,4F)2 R
(2T,2F)4 R (2F,2T)4 S (T,F)8
(2,-2,6,-6)?(3,-1)4 ? (8),(1,-1)4
(2,-2,3,-1,2,-6) ? (-8,(-1,1)4
(-2,2,-3,1,-1,7)
Contingent INVALID! (Mixture of positive and
negative)
38Conclusion The main use of the TT Equation is
that symbolized propositions can be examined.
39Reference
- Alexander, Peter, An Introduction to Logic,
London George Allen and Unwin Ltd, 1971. Print - Copi, Irving. Introduction to Logic, New York
Macmillan Publishing Co., Sixth Edition, 1982.
Print. - Crystal, David, Cambridge Encyclopedia of
Language, UK Cambrige University Press, Second
Edition,1997. Print. - Latta, Robert and Alexander Macbeath, The
Elements of Logic, London Macmillan, 1956. Print
40Thank you