TT Equation by Joby John - PowerPoint PPT Presentation

About This Presentation
Title:

TT Equation by Joby John

Description:

Abstract: The academic article entitled Probing TT Equation to the Truth Table Method: A Study on Symbolic Logic is an attempt to explain a useful equation to Truth Table Method. It is helpful to examine the validity of arguments as well as logical status of statements. This equation compliments to the easy functioning of the Truth Tables when it deals with lengthy symbolic language. Keywords: Truth Table, TT Equation, Validity. – PowerPoint PPT presentation

Number of Views:11
Slides: 41
Provided by: jobykeelath

less

Transcript and Presenter's Notes

Title: TT Equation by Joby John


1
Probing TT Equation to the Truth Table Method
A Study on Symbolic Logic
Academic Paper Submitted to Rev Dr Henry D
Almeida, SJ Faculty of Philosophy Head of the
Department Indian Studies Jnana- Deepa
Vidyapeeth Pune
  • Submitted by
  • Joby John
  • NHMS
  • II Year Philosophy (Exceptional)
  • Jnana- Deepa Vidyapeeth
  • Roll No. 17073
  • jobykeelath_at_gmail.com
  • Mobile9400821853

2
Truth Table
P q p q p?q p v q p?q pq
T T F F T T T T
T F F T F T F F
F T T F F T T F
F F T T F F T T
3
TT EquationTwo Methods
Method1
Method2
  • TT Symbolic Description

TT Numerical Description
4
Method1TT Symbolic Description
  • Step 1

Conversion of propositions to symbolic logical
form. Like p?(p?q)
5
Method1TT Symbolic Description
  • Step 2

Find out the total number propositional variables
(eg. p,q,r,s etc.). p?(p?q) Here we have two
propositional variables
1
2
6
Method1TT Symbolic Description
  • Step 3

Convert the variable to TT Equation
If variable negative E.g. p, q, r
If variable positive E.g. p, q,r
7
Method1TT Symbolic Description
  • Step 3 Convert the variable to TT Equation

Total number of propositional variables(n)
8
Method1TT Symbolic Description
  • Step 3 Convert the variable to TT Equation

Individual number of the variable(x)
x Individual number of the variable(x) Individual number of the variable(x) Individual number of the variable(x) Individual number of the variable(x) Individual number of the variable(x)
x p q r s t
x 1 2 3 4 5
9
Method1TT Symbolic Description
  • Step 3 Convert the variable to TT Equation

Individual number of the variable(x)
10
Method1TT Symbolic Description
  • Step 3 Convert the variable to TT Equation

Multiply T and F according to this number
E.g. 21 (T,F) 2(T,F) 2T, 2F
11
Method1TT Symbolic Description
  • Step 3 Convert the variable to TT Equation

Repeat the figures in the bracket according to
this number
Instead of writing this lengthy result just keep
the conversion like this 2(T,F)4
E.g. 21 (T,F)22 2(T,F)4 (2T, 2F) (2T, 2F)
(2T, 2F) (2T, 2F)
12
Method1TT Symbolic Description
  • Step 3Convert the variable to TT Equation

1
2
Here we have two positive variables So n2 X
(For P-1 and for Q-2)
p?(p?q)
p 22-1(T,F)21-1 2(T,F) (2T,2F)
q 22-2(T,F)22-1 (T,F)2 (T,F) (T,F)
13
Method1TT Symbolic Description
  • Step 3Convert the variable to TT Equation

p ? (p?q)
The final conversion symbol is put in the squire
brackets ?
(2T,2F) ? (2T,2F) ? (T,F)2
14
Method1TT Symbolic Description
  • Step4

Evaluate each combination by using TT Equation
Table
TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
(2T,2F) ? (2T,2F) ? (T,F)2
15
Method1TT Symbolic Description
  • Step4Evaluate each combination by using TT
    Equation Table

TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
T?T T
(2T,2F) ? (2T,2F) ? (T,F)2
16
Method1TT Symbolic Description
  • Step4Evaluate each combination by using TT
    Equation Table

TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
T?F F
(2T,2F) ? (2T,2F) ? (T,F)2
17
Method1TT Symbolic Description
  • Step4Evaluate each combination by using TT
    Equation Table

TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
F?T T
(2T,2F) ? (2T,2F) ? (T,F)2
18
Method1TT Symbolic Description
  • Step4Evaluate each combination by using TT
    Equation Table

TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
F?F F
(2T,2F) ? (2T,2F) ? (T,F)2
19
Method1TT Symbolic Description
  • Step4Evaluate each combination by using TT
    Equation Table

TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
T,F
2T
(2T,2F) ? (2T,2F) ? (T,F)2
20
Method1TT Symbolic Description
  • Step4Evaluate each combination by using TT
    Equation Table

TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
T,F
2T
(2T,2F) ? (2T,2F) ? (T,F)2
21
Method1TT Symbolic Description
  • Step4Evaluate each combination by using TT
    Equation Table

TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
2T
T,F
(2T,2F) ? (2T,2F) ? (T,F)2
22
Method1TT Symbolic Description
  • Step4Evaluate each combination by using TT
    Equation Table

TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
(2T,2F) ? (2T,2F) ? (T,F)2
2T
T,F
23
Method1TT Symbolic Description
  • Step4Evaluate each combination by using TT
    Equation Table

TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
T,F
(2T,2F) ? (T,F ,2T)
T T
24
Method1TT Symbolic Description
  • Step4Evaluate each combination by using TT
    Equation Table

TT Equation Table TT Equation Table TT Equation Table
? T ? T T All other combinations F
T T T All other combinations F
F F T All other combinations F
v F v F F All other combinations T
? T ? F F All other combinations T
T,F
T T
25
Method1TT Symbolic Description
  • Step4Evaluate each combination by using TT
    Equation Table

Contingent INVALID
(T,F ,2T)
p ? (p ? q)
T T T T T
T F T F F
F T F T T
F T F T F
26
Method1TT Symbolic Description
(T,F ,2T)
  • Step5The final string (TT Equation Validity)of
    the evaluation will be same as the final result
    of Truth Table.
  • Step6Evaluation result will be described as same
    as Truth Table (i.e. F and T combination will be
    Contingent, Total F will be Contradictory and
    Total T will be Tautology).
  • StepPracticing TT Equation enables us to examine
    the validity of lengthy symbolic representation
    of the propositions.

27
Method2TT Numerical Description
  • Conversion of propositions to symbolic logical
    form.
  • Find out the total number propositional variables
    (eg. p,q,r,s etc.).
  • Convert the variable to TT Equation.
  • Form the TT Symbolic Description.
  • Convert the TT Symbolic Description to TT
    Numerical Description by using TTND Conversion
    Table1and2.
  • The final string (TT Equation Validity) of the
    evaluation will be same as the final result of
    Truth Table. The TT Equation Validity will be
    based on TT Numerical Evaluation Table.
  • Evaluation result will be described as same as
    Truth Table (i.e. -1 and 1 combination will be
    Contingent, Total -1 will be Contradictory and
    Total 1 will be Tautology).

28
Method2TT Numerical Description
TTND Conversion Table-1 TTND Conversion Table-1 TTND Conversion Table-1 TTND Conversion Table-1
TTSD Value Symbol TTND Conversion Equations ( x1and y -1) Conversion Value of equation
TT ? v ? T
FF ? v F
FF ? T
TF ? ? F
TF   v   T
FT ? F
FT v ? T
TTND Conversion Table-2 TTND Conversion Table-2 TTND Conversion Table-2
? 1 ? 1 1 All other combinations -1
1 1 1 All other combinations -1
-1 -1 1 All other combinations -1
v -1 v -1 -1 All other combinations 1
? 1 ? -1 -1 All other combinations 1
29
Method2TT Numerical Description
TT Numerical Evaluation Table TT Numerical Evaluation Table TT Numerical Evaluation Table TT Numerical Evaluation Table
Value Result T,F representation Value of the result
Tautology 1,1 T,T T
Contradictory -1, -1 F,F F
Contingent -1, 1 / 1, -1 TF/FT F
30
Method2TT Numerical Description
 
31
Method2TT Numerical Description
Rewriting 2T2F ?(2T2F?(TF, TF)
 
(1, -1) ?(1, -1?-1,-1 )
32
Method2TT Numerical Description
TTND Conversion Table-2 TTND Conversion Table-2 TTND Conversion Table-2
? 1 ? 1 1 All other combinations -1
1 1 1 All other combinations -1
-1 -1 1 All other combinations -1
v -1 v -1 -1 All other combinations 1
? 1 ? -1 -1 All other combinations 1
Rewriting 2T2F ?(2T2F?(TF, TF)
-1
1
(1, -1) ?(1, -1?-1,-1 )
(1, -1) ?(-1, 1)
33
Method2TT Numerical Description
TTND Conversion Table-2 TTND Conversion Table-2 TTND Conversion Table-2
? 1 ? 1 1 All other combinations -1
1 1 1 All other combinations -1
-1 -1 1 All other combinations -1
v -1 v -1 -1 All other combinations 1
? 1 ? -1 -1 All other combinations 1
Rewriting 2T2F ?(2T2F?(TF, TF)
-1
1
(1, -1) ?(-1, 1)
-1 1
34
Method2TT Numerical Description
TT Numerical Evaluation Table TT Numerical Evaluation Table TT Numerical Evaluation Table TT Numerical Evaluation Table
Value Result T,F representation Value of the result
Tautology 1,1 T,T T
Contradictory -1, -1 F,F F
Contingent -1, 1 / 1, -1 TF/FT F
Rewriting 2T2F ?(2T2F?(TF, TF)
-1, 1
Contingent INVALID
35
Example Method1-TTSD
  • (p ?q) ?(q ?r) ?(r ?s) ? (p ?s)

(8F,8T)?(4T,4F)2) ?((4T,4F)2?(2T,2F)4)
?((2F,2T)4? (T,F)8) ? ((8F,8T)?(T,F)8)
Conversion P (8T,8F) P (8F,8T) Q(4T,4F)2 R
(2T,2F)4 R (2F,2T)4 S (T,F)8
(8T,4T,4F)?((2T,2F,4T)2) ?((3T,F)4 ?
(8T),(T,F)4
(2T,2F,4T,2T,2F,4F)?(3T,F)4 ? (8T),(T,F)4
(2T,2F,3T,F,2T,6F) ? (8F,(F,T)4
(2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent
INVALID!
36
No (p ? q) ? (q   ? r) ? (r ? s) ? ? (p ? s)
1 F T T T T T T T F T T F 2F F F T T
2 F T T T T T T T F T F F 2F F F T F
3 F T T F T F F F T T T T 2T F F T T
4 F T T F T F F F T F F T 2T F F T F
5 F T F T F T T T F T T F 3F F F T T
6 F T F T F T T T F T F F 3F F F T F
7 F T F T F T F T T T T F 3F F F T T
8 F T F T F T F F T F F T 1T F F T F
9 T T T T T T T T F T T F 1F F T T T
10 T T T T T T T T F T F T 7T T T F F
11 T T T F T F F F T T T T 7T F T T T
12 T T T F T F F F T F F T 7T T T F F
13 T F F F F T T F F T T T 7T F T T T
14 T F F F F T T F F T F T 7T T T F F
15 T F F F F T F F T T T T 7T F T T T
16 T F F F F T F F T F F T 7T T T F F
(2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!   (2F,2T,3F,T,F,T,6T) 2F,2T,3F,T,F,7T Contingent INVALID!  
37
Example Method2-TTND
  • (p ?q) ?(q ?r) ?(r ?s) ? (p ?s)

(8F,8T)?(4T,4F)2) ?((4T,4F)2?(2T,2F)4)
?((2F,2T)4? (T,F)8) ? ((8F,8T)?(T,F)8)
(-8,8)?(4,-4)2) ?((4,-4)2?(2,-2)4) ?((-2,2)4?
(1,-1)8) ? ((-8,8)?(1,-1)8)
(8,4,-4)?((2,-2,4)2) ?((3,-1)4 ? (8),(1,-1)4
Conversion P (8T,8F) P (8F,8T) Q(4T,4F)2 R
(2T,2F)4 R (2F,2T)4 S (T,F)8
(2,-2,6,-6)?(3,-1)4 ? (8),(1,-1)4
(2,-2,3,-1,2,-6) ? (-8,(-1,1)4
(-2,2,-3,1,-1,7)
Contingent INVALID! (Mixture of positive and
negative)
38
Conclusion The main use of the TT Equation is
that symbolized propositions can be examined.
39
Reference
  • Alexander, Peter, An Introduction to Logic,
    London George Allen and Unwin Ltd, 1971. Print
  • Copi, Irving. Introduction to Logic, New York
    Macmillan Publishing Co., Sixth Edition, 1982.
    Print.
  • Crystal, David, Cambridge Encyclopedia of
    Language, UK Cambrige University Press, Second
    Edition,1997. Print.
  • Latta, Robert and Alexander Macbeath, The
    Elements of Logic, London Macmillan, 1956. Print

40
Thank you
Write a Comment
User Comments (0)
About PowerShow.com