Title: Revisiting Integer Decomposition, Integer Rounding and Total Dual Integrality
1RevisitingInteger Decomposition, Integer
Rounding and Total Dual Integrality
- András Sebo,
- CNRS, Grenoble
2Integer Decomposition (ID)
- V set of vectors. S ? 2V has the ID property,
- if v ? k conv(S) , (that is, v?S?S ?(S)?S,
?s?S ?(S) k) - and v, k integer ?v S1 Sk , (Si?S, i1,k)
- Examples G(V,E), E ? 2V not ID
- matchings ? 2E
- matchings in bipartite graphs
- independent sets of matroids
ID
matchings ? 2E
E ? 2V
3Integer Rounding (IR)
- Def A system of inequalities S x 1
-
x ? 0 - has the IR property,if for any integer 1?n vector
c ?min yT1 ? yS ? c, y ? 0 min yT1 y
integer - Example (boring) If b1, and S
- G(V,E), ?e ? 0,1V, (e ? E) , matchings not
IR - matchings in bipartite graphs IR
- independent sets of matroids IR
4ID and IR are always related
- Variant of Baum, Trotter (1981) S S down
- S x 1, x ? 0 has IR ? S has ID
- Proof ? v?s?S ?(S)?S, ?s?S ?(S) k
- Apply IR to cv to get better than y ?.
- ? add ?opt? - opt times 0 ? S and apply ID.
5TDI
- Ax b is TDI ,
- if for all c ?Zn, if whenever min yTb yAc
- exists it does have an integer optimum.
- Edmonds-Giles Then it has integer vertices
- S x 1, x ? 0 conv(S )x Ax
b - can be TDI or IR if TDI b1, if only
IR, - maybe noninteger b can be big
6INTEGER DECOMPOSITION SS down TDI
Suppose S S down?2V
is ID. conv(S ) x Ax b. Then k
conv(S ) x Ax kb, x ? 0 If in addition
Ax kb, 0 x 1 is TDI for all k
Edmonds type theorem
max union of k elements of S
min X k b(c) c ? rows of A covering V /
X
Greene-Kleitman type theorem
min?C?Cmin k b(c),V(C) ,c ?rows of A
covering V.
7Example 1 Bipartite Matchings
- S matchings of a graph G(V,E) ? 2E.
- Konigs theorem ID property
- Polyhedron conv(S )x?RE x(?(v)) 1, x ? 0
- S S down k TDI
-
Edmonds type theorem
max union of k elements of S
min X k c c ? stars covering E / X
Greene-Kleitman type theorem
min?C?C mink ,V(C) ,c ? stars covering V
8Example 2 Posets
- S family of antichains of a poset ? 2V.
- Dilworths theorem ID property
- Polyhedron conv(S )x?RV x(A) 1, x ? 0
-
A antichain -
S S down k TDI Edmonds type theorem
max union of k elements of S
min X k c c ? chains covering V / X
Greene-Kleitman type theorem
min?C?C mink ,C ,c ? chains covering V
9Example 3 Matroids
- S family of independent sets of a matroid ?
2V. - Edmonds matroid partition ID property
- Polyhedron conv(S )x?RV x(U) r(U), x ? 0
- S S down k TDI
-
Edmonds type theorem
max union of k elements of S
min X k r(c) c ? ind. sets covering V /
X
Greene-Kleitman type theorem
min?C?C mink r(C),C ,c ? ind. sets covering
V.
10MIRUP
- Modified integer round up property (MIRUP)
- A system of inequalities Ax b (A mxn, b mx1)
- x
? 0 - has the MIRUP property , if for any c?Zn
- 1 ?min yb yA ? c, y ? 0 ? ?
- min yb yA ? c, y ? 0, y integer
- 1 BIGGER ERROR
11Reformulations to cones
- Hilbert basis (Hb) v1 , , vn is a Hilbert
basis if - any x?cone(v1 , , vn)?Zn is a nonneg. int.
comb - Schrijver TDI ? active rows form a Hb.
- Schrijver S IR ? is a Hb.
- Modified Hilbert basis in the def of Hb. ask
that - the coordinate sum of the int solution is 1 more
S 1 0 1
12Example 4 matchings in nonbip Goldberg(1973),
Andersen (1977), Seymour (1979)conjecture that
matchings have the MIRUP.
Example 5 matroid intersectionConjecture
of Aharoni and Berger (pers. comm)M1(S,F1),
M2(S,F2), S covered by k of Fi (i1,2).Then it
can be covered by k1 of F1? F2 .
Example 6 bin packingConjecture of Marcotte,
Sheithauer, Terno MIRUP
13Conclusion
- - ID (IR) combined with TDI , and IR 1 have
combinatorial meanings. - Stable sets of posets are an example.
Generalizations ? - To stable sets, paths, circuits Leads to
proofs for graph theory thms and relating some
conj (of Berge and Linial on path partitions). - Do the solutions of the bin packing problem have
the MIRUP property ? - A method and some answer
14- SEE YOU ON WEDNESDAY
- ???????
-
- A mercredi
- ?? ?????
- Szerdán találkozunk