Revisiting Integer Decomposition, Integer Rounding and Total Dual Integrality - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

Revisiting Integer Decomposition, Integer Rounding and Total Dual Integrality

Description:

V set of vectors. S 2V has the ID property, if v k conv(S) , (that is, v ... graph theory thms and relating some conj (of Berge and Linial on path partitions) ... – PowerPoint PPT presentation

Number of Views:92
Avg rating:3.0/5.0
Slides: 15
Provided by: seboa
Category:

less

Transcript and Presenter's Notes

Title: Revisiting Integer Decomposition, Integer Rounding and Total Dual Integrality


1
RevisitingInteger Decomposition, Integer
Rounding and Total Dual Integrality
  • András Sebo,
  • CNRS, Grenoble

2
Integer Decomposition (ID)
  • V set of vectors. S ? 2V has the ID property,
  • if v ? k conv(S) , (that is, v?S?S ?(S)?S,
    ?s?S ?(S) k)
  • and v, k integer ?v S1 Sk , (Si?S, i1,k)
  • Examples G(V,E), E ? 2V not ID
  • matchings ? 2E
  • matchings in bipartite graphs
  • independent sets of matroids

ID
matchings ? 2E
E ? 2V
3
Integer Rounding (IR)
  • Def A system of inequalities S x 1

  • x ? 0
  • has the IR property,if for any integer 1?n vector
    c ?min yT1 ? yS ? c, y ? 0 min yT1 y
    integer
  • Example (boring) If b1, and S
  • G(V,E), ?e ? 0,1V, (e ? E) , matchings not
    IR
  • matchings in bipartite graphs IR
  • independent sets of matroids IR

4
ID and IR are always related
  • Variant of Baum, Trotter (1981) S S down
  • S x 1, x ? 0 has IR ? S has ID
  • Proof ? v?s?S ?(S)?S, ?s?S ?(S) k
  • Apply IR to cv to get better than y ?.
  • ? add ?opt? - opt times 0 ? S and apply ID.

5
TDI
  • Ax b is TDI ,
  • if for all c ?Zn, if whenever min yTb yAc
  • exists it does have an integer optimum.
  • Edmonds-Giles Then it has integer vertices
  • S x 1, x ? 0 conv(S )x Ax
    b
  • can be TDI or IR if TDI b1, if only
    IR,
  • maybe noninteger b can be big

6
INTEGER DECOMPOSITION SS down TDI
Suppose S S down?2V
is ID. conv(S ) x Ax b. Then k
conv(S ) x Ax kb, x ? 0 If in addition
Ax kb, 0 x 1 is TDI for all k
Edmonds type theorem

max union of k elements of S
min X k b(c) c ? rows of A covering V /
X
Greene-Kleitman type theorem
min?C?Cmin k b(c),V(C) ,c ?rows of A
covering V.
7
Example 1 Bipartite Matchings
  • S matchings of a graph G(V,E) ? 2E.
  • Konigs theorem ID property
  • Polyhedron conv(S )x?RE x(?(v)) 1, x ? 0
  • S S down k TDI

Edmonds type theorem
max union of k elements of S
min X k c c ? stars covering E / X

Greene-Kleitman type theorem
min?C?C mink ,V(C) ,c ? stars covering V
8
Example 2 Posets
  • S family of antichains of a poset ? 2V.
  • Dilworths theorem ID property
  • Polyhedron conv(S )x?RV x(A) 1, x ? 0

  • A antichain

S S down k TDI Edmonds type theorem
max union of k elements of S
min X k c c ? chains covering V / X

Greene-Kleitman type theorem
min?C?C mink ,C ,c ? chains covering V
9
Example 3 Matroids
  • S family of independent sets of a matroid ?
    2V.
  • Edmonds matroid partition ID property
  • Polyhedron conv(S )x?RV x(U) r(U), x ? 0
  • S S down k TDI

Edmonds type theorem
max union of k elements of S
min X k r(c) c ? ind. sets covering V /
X
Greene-Kleitman type theorem
min?C?C mink r(C),C ,c ? ind. sets covering
V.
10
MIRUP
  • Modified integer round up property (MIRUP)
  • A system of inequalities Ax b (A mxn, b mx1)
  • x
    ? 0
  • has the MIRUP property , if for any c?Zn
  • 1 ?min yb yA ? c, y ? 0 ? ?
  • min yb yA ? c, y ? 0, y integer
  • 1 BIGGER ERROR

11
Reformulations to cones
  • Hilbert basis (Hb) v1 , , vn is a Hilbert
    basis if
  • any x?cone(v1 , , vn)?Zn is a nonneg. int.
    comb
  • Schrijver TDI ? active rows form a Hb.
  • Schrijver S IR ? is a Hb.
  • Modified Hilbert basis in the def of Hb. ask
    that
  • the coordinate sum of the int solution is 1 more

S 1 0 1
12
Example 4 matchings in nonbip Goldberg(1973),
Andersen (1977), Seymour (1979)conjecture that
matchings have the MIRUP.
Example 5 matroid intersectionConjecture
of Aharoni and Berger (pers. comm)M1(S,F1),
M2(S,F2), S covered by k of Fi (i1,2).Then it
can be covered by k1 of F1? F2 .
Example 6 bin packingConjecture of Marcotte,
Sheithauer, Terno MIRUP
13
Conclusion
  • - ID (IR) combined with TDI , and IR 1 have
    combinatorial meanings.
  • Stable sets of posets are an example.
    Generalizations ?
  • To stable sets, paths, circuits Leads to
    proofs for graph theory thms and relating some
    conj (of Berge and Linial on path partitions).
  • Do the solutions of the bin packing problem have
    the MIRUP property ?
  • A method and some answer

14
  • SEE YOU ON WEDNESDAY
  • ???????
  • A mercredi
  • ?? ?????
  • Szerdán találkozunk
Write a Comment
User Comments (0)
About PowerShow.com