11'5 Translation of Conics - PowerPoint PPT Presentation

1 / 6
About This Presentation
Title:

11'5 Translation of Conics

Description:

For the parabola, the vertex will be (h,k). Standard Equations ... Since p 0, the parabola opens down. ... Sketch the parabola through the vertex facing down. ... – PowerPoint PPT presentation

Number of Views:111
Avg rating:3.0/5.0
Slides: 7
Provided by: msea1
Category:

less

Transcript and Presenter's Notes

Title: 11'5 Translation of Conics


1
11.5 Translation of Conics
  • In previous sections, all conic sections had
    centers at (0,0).
  • In this section the conic sections can have any
    center with ordered pair (h,k).
  • For the parabola, the vertex will be (h,k).

2
Standard Equations
3
Graphing a Translated Circle
  • Graph the circle (x 1)2 (y 2)2 9
  • Procedure
  • From the standard equation, the center is (h,k)
  • To correctly derive (h,k) from the equation,
    change the signs.
  • Therefore, h 1 and k -2 giving a center
    (1,-2)
  • The radius is sqrt(9) 3. Therefore, r 3
  • Plot the center (1,-2), and lightly draw a new
    axis through the pt.
  • The new axis should match up with the original
    x-y axis.
  • Put a point along each axis r distance, or 3,
    from the center.
  • Sketch the circle through the four points.

4
Graphing a Translated Ellipse
  • Graph the ellipse (x 2)2/9 (y 1)2/4 1
  • Procedure
  • From the standard equation, changing signs, h
    2, k 1.
  • The largest number is under x, so the ellipse is
    horizontal.
  • a 3 and b 2
  • You do not need to graph the foci, unless asked
    to.
  • As with the circle, plot the center (2,1), and
    draw a new axis through the point.
  • Plot a and a along the new x-axis.
  • Plot b and b along the new y-axis.
  • Carefully sketch the ellipse through the plotted
    points.

5
Graphing a Translated Hyperbola
  • Graph the hyperbola (x 3)2/1 (y 2)2/9 1
  • Procedure
  • From the standard equation, changing signs, h
    3 and k 2.
  • The hyperbola is horizontal because the negative
    is in front of y.
  • a 1 and b 3 and center (3,2)
  • As previously done, plot the center point and
    draw a new axis through this point.
  • Plot a and a along the new x-axis, and b and
    b along the new y-axis.
  • Draw the box with dashed lines through a and b.
  • Lightly draw the asymptotes as diagonal lines
    through the corners of the box.
  • Sketch the hyperbola through point as using the
    asymptotes as a guide.

6
Graphing a Translated Parabola
  • Graph the parabola (x 2)2 4(-1)(y 3)
  • Procedure
  • From the standard equation, changing signs, h
    2 and k 3.
  • The vertex of the parabola is (2,3)
  • The parabola is vertical since the x is squared
    and p -1
  • Since p lt 0, the parabola opens down.
  • As was previously done, plot the center, (the
    vertex), and draw a new axis through the point.
  • Since p -1, plot the point p one place down
    from the vertex.
  • Sketch the parabola through the vertex facing
    down.
Write a Comment
User Comments (0)
About PowerShow.com