Title: Wonders of the Digital Envelope
1 Happy Birthday Les !
2Valiants Permanent gift to
TCS
to TCS
- Avi Wigderson
- Institute for Advanced Study
3Valiants gift to me
- -my postdoc problems!
- Valiant 82 Parallel computation, Proc. Of
7th IBM symposium on mathematical foundations of
computer science. - Are the following inherently sequential?
- Finding maximal independent set?
- Karp-Wigderson No! NC algorithm.
- -Finding a perfect matching?
- Karp-Upfal-Wigderson No! RNC algorithm
- OPEN Det NC alg for perfect matching.
4The Permanent
- X11,X12,, X1n
- X21,X22,, X2n
-
- Xn1,Xn2,, Xnn
- Valiant 79 The complexity of computing the
permanent - Valiant 79 The complexity of enumeration and
reliability problems -
to TCS
X Pern(X) ???Sn ?i?n
Xi?(i)
5- Valiant brought the Permanent, polynomials and
Algebra into the focus of TCS research. - Plan of the talk
- As many results and questions as I can squeeze in
½ an hour about the - Permanent and friends
- Determinant, Perfect matching, counting
6Monotone formulae for Majority
1
0
mk10
Valiant s random! Pr Fs ? Majk lt
exp(-k) OPEN Explicit? AKS, Determine m
(k2ltmltk5.3)
7Counting classes PP, P, PP,
Gill PP
C(000) C(001) C(111)
C C(Z1,Z2,,Zn) is a small circuit/formula,
k2n,
Valiant P
C(000) C(001) C(111)
8The richness of P-complete problems
SAT CLIQUE SAT CLIQUE Permanent 2-SAT Netw
ork Reliability Monomer-Dimer Ising, Potts,
Tutte Enumeration, Algebra, Probability, Stat.
Physics
NP
C(000) C(001) C(111)
P
C(000) C(001) C(111)
9The power of counting Todas Theorem
PH P ? NP PSPACE
PP Valiant-Vazirani Poly-time
reduction C ? D OPEN Deterministic Valiant-Vazi
rani?
?
?
?
?
?
PROBABILISTIC
10Nice properties of Permanent Per is downwards
self-reducible
Pern(X) ???Sn ?i?n Xi?(i) Pern(X) ?i?n
Pern-1(X1i)
Per is random self-reducible Beaver-Feigenbaum,
Lipton
C errs on ?1/(8n) Interpolate Pern(X) from
C(XiY) with Y random, i1,2,,n1
Fnxn
C errs
x
xy
x2y
x3y
11Hardness amplification
- If the Permanent can be efficiently computed
- for most inputs, then it can for all inputs !
- If the Permanent is hard in the worst-case,
- then it is also hard on average
- Worst-case ? Average case reduction
- Works for any low degree polynomial.
- Arithmetization Boolean functions?polynomials
12Avalanche of consequencesto probabilistic proof
systems
- Using both RSR and DSR of Permanent!
- Nisan Per ? 2IP
- Lund-Fortnow-Karloff-Nisan Per ? IP
- Shamir IP PSPACE
- Babai-Fortnow-Lund 2IP NEXP
- Arora-Safra,
- Arora-Lund-Motwani-Sudan-Szegedy PCP NP
13Which classes have complete RSR problems?
- EXP
- PSPACE Low degree extensions
- P Permenent
- PH
- NP No Black-Box reductions
- P Fortnow-Feigenbaum,Bogdanov-Trev
isan - NC2 Determinant
- L
- NC1 Barrington
- OPEN Non Black-Box reductions?
?
14On what fraction of inputs can we compute
Permanent?
Assume a PPT algorithm A computer Pern for on
fraction a of all matrices in Mn(Fp). a 1
? P BPP a 1-1/n ? P BPP Lipton a
1/nc ? P BPP CaiPavanSivakumar a n3/vp
? P PH AM FeigeLund a 1/p
possible! OPEN Tighten the bounds! (Improve
Reed-Solomon list decoding Sudan,)
15Hardness vs. Randomness
- Babai-Fortnaow-Nisan-Wigderson
- EXP ? P/poly ? BPP ? SUBEXP
- Impagliazzo-Wigderson
- EXP ? BPP ? BPP ? SUBEXP
- Kabanets-Impagliazzo Permanent is easy iff
Identity Testing can be derandomized
Proof
EXP ? P/poly? Were done
EXP ? P/poly ? Per is EXP-complete Karp-Lipton,To
da workRSRDSRwork
16Non-relativizing Non-natural circuit lower
bounds
Vinodchandran PP ? SIZE(n10) Aaronson
This result doesnt relativize
Vinodchandrans Proof
PP ? P/poly? Were done
PP ? P/poly? PP MA LFKN? PP PP? ?2P ?
PP Toda? PP ? SIZE(n10) Kannan
Santhanam MA/1 ? SIZE(n10) OPEN Prove
NP ? SIZE(n10) Aaronson-Wigderson requires
non-algebrizing proofs
17The power of negation Arithmetic circuits
PMP(G) Perfect Matching polynomial of
G ShamirSnir,TiwariTompa msize(PMP(Kn,n)) gt
exp(n) FisherKasteleynTemperlysize(PMP(Gridn,n)
) poly(n) Valiant
msize(PMP(Gridn,n)) gt exp(n)
Boolean circuits
PM Perfect Matching function Edmonds
size(PM) poly(n) Razborov msize(PM) gt
nlogn OPEN tight? RazWigderson
mFsize(PM) gt exp(n)
18The power of Determinant (and linear algebra)
X?Mk(F) Detk(X) ???Sk sgn(?) ?i?k
Xi?(i) Kirchoff counting spanning trees in
n-graphs Detn FisherKasteleynTemperly
counting perfect matchings in planar n-graphs
Detn Valiant, Cai-Lu Holographic algorithms
Valiant evaluating size n formulae
Detn Hyafill, ValiantSkyumBerkowitzRackoff
evaluating size n degree d arithmetic circuits
Det OPEN Improve to Detpoly(n,d)
nlogd
19Algebraic analog of P?NP
- F field, char(F)?2.
- X?Mk(F) Detk(X) ???Sk sgn(?) ?i?k Xi?(i)
- Y?Mn(F) Pern(Y) ???Sn ?i?n
Yi?(i) - Affine map L Mn(F) ? Mk(F) is good if Pern
Detk? L - k(n) the smallest k for which there is a good
map? - Polya k(2) 2 Per2 Det2
- Valiant ?F k(n) lt exp(n)
- Mignon-Ressayre ?F k(n) gt n2
- Valiant k(n) ? poly(n) ?
P?NP - Mulmuley-Sohoni Algebraic-geometric approach
20Detn vs. Pern
- Nisan Both require noncommutative arithmetic
branching programs of size 2n - Raz Both require multilinear arithmetic
formulae of size nlogn - Pauli,Troyansky-Tishby Both equally computable
by nature- quantum state of n identical
particles bosons ? Pern, fermions ? Detn - Ryser Pern has depth-3 circuits of size n22n
- OPEN Improve n! for Detn
21Approximating Pern
- A nn 0/1 matrix.
- B Bij ? Aij at random
- Godsil-Gutman Pern(A) EDetn(B)2
- KarmarkarKarpLiptonLovaszLuby variance 2n
- B Bij ? AijRij with random Rij, ER0, ER21
- Use R?,?2,?31. variance 2n/2
- Chien-Rasmussen-Sinclair R non commutative!
- Use RC1,C2,..Cn elements of Clifford algebra.
-
variance poly(n) - Approx scheme? OPEN Compute Det(B)
?
?
22Approx Pern deterministically
- A nn non-negative real matrix.
- Linial-Samorodnitsky-Wigderson
- Deterministic e-n -factor approximation.
- Two ingredients
- (1) Falikman,Egorichev If B Doubly Stochastic
- then e-n n!/nn Per(B) 1
- (the lower bound solved van der Vardens conj)
- (2) Strongly polynomial algorithm for the
following reduction to DS matrices - Matrix scaling Find diagonal X,Y s.t. XAY is DS
- OPEN Find a deterministic subexp approx.
23Many happy returns, Les !!!