Wavelets: a versatile tool - PowerPoint PPT Presentation

About This Presentation
Title:

Wavelets: a versatile tool

Description:

Signal Processing: 'Adaptive' affine. time-frequency representation ... Affine diffusion. Time-scale covariant heat equations. Axiomatic approach of multiscale ... – PowerPoint PPT presentation

Number of Views:65
Avg rating:3.0/5.0
Slides: 21
Provided by: paulogo
Category:

less

Transcript and Presenter's Notes

Title: Wavelets: a versatile tool


1
Wavelets a versatile tool
  • Signal Processing Adaptive affine
  • time-frequency representation
  • Statistics existence test of moments

Paulo Gonçalves INRIA Rhône-Alpes, France On
leave _at_ IST ISR (2003-2004)
IST-ISR January 2004
2
PDEs applied to Time Frequency Representations
  • Julien Gosme (UTT, France)
  • Pierre Borgnat (IST-ISR)
  • Etienne Payot (Thalès, France)

3
Outline
  • Atomic linear decompositions
  • Classes of energetic distributions
  • Smoothing to enhance readability
  • Diffusion equations adaptive smoothing
  • Open issues

4
Combining time and frequencyFourier transform
  • s(t)
  • s(t) lt s(.) , d(.-t) gt
  • s(t) lt S(.) , ei2pt. gt
  • S(f)
  • S(f) lt s(.) , ei2pf. gt
  • S(f) lt S(.) , d(.-f) gt

Blind to non stationnarities!
u
?
5
Combining time and frequencyNon Stationarity
Intuitive
Fourier
x(t)
X(f)
6
Combining time and frequencyShort-time Fourier
Transform
lt s(.) , d(. f) gt
  • lt s(.) , d(. - t) gt

lt s(.) , gt,f(.) gt Q(t,f)
lts(.) , TtFf g0(.) gt
7
Combining time and frequencyWavelet Transform
frequency
time
lt s(.) , TtDa ?0 gt O(t,f f0/a)
8
Combining time and frequencyQuadratic classes
9
Smoothing to enhance readability Quadratic
classes
NON ADAPTIVE SMOOTHING
10
SmoothingHeat Equation and Diffusion
Uniform gaussian smoothing as solution of the
Heat Equation (Isotropic diffusion)
11
Adaptive SmoothingAnisotropic Diffusion
Locally control the diffusion rate with a signal
dependant time-frequency conductance
12
Adaptive SmoothingAnisotropic Diffusion
13
Adaptive SmoothingAnisotropic Diffusion
14
Combining time and frequencyWavelet Transform
  • Frequency dependent resolutions (in time
    freq.) (Constant Q analysis)
  • Orthonormal Basis framework (tight frames)
  • Unconditional basis and sparse decompositions
  • Pseudo Differential operators
  • Fast Algorithms (Quadrature filters)

STFT Constant bandwidth analysis
STFT redundant decompositions (Balian Law Th.)
Good for compression, coding, denoising,
statistical analysis
Good for Regularity spaces characterization,
(multi-) fractal
analysis
Computational Cost in O(N) (vs. O(N log N) for
FFT)
15
Combining time and frequencyWavelet Transform
  • Frequency dependent resolutions (in time
    freq.) (Constant Q analysis)
  • Orthonormal Basis framework (tight frames)
  • Unconditional basis and sparse decompositions
  • Pseudo Differential operators
  • Fast Algorithms (Quadrature filters)

STFT Constant bandwidth analysis
STFT redundant decompositions (Balian Law Th.)
Good for compression, coding, denoising,
statistical analysis
Good for Regularity spaces characterization,
(multi-) fractal
analysis
Computational Cost in O(N) (vs. O(N log N) for
FFT)
16
Affine classTime-scale shifts covariance
17
Affine diffusionTime-scale covariant heat
equations
Axiomatic approach of multiscale analysis (L.
Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel)
18
Affine diffusionTime-scale covariant heat
equations
Affine Diffusion scheme
19
Affine diffusionOpen Issues
  • Corresponding Green function (Klauder)?
  • Corresponding operator
  • linear?
  • integral?
  • affine convolution?
  • Stopping criteria?
  • (Approached) reconstruction formula?
  • Matching pursuit, best basis selection
  • Curvelets, edgelets, ridgelets, bandelets,
    wedgelets,

20
Wavelet And Multifractal Analysis (WAMA)Summer
School in Cargese (Corsica), July 19-31, 2004(P.
Abry, R. Baraniuk, P. Flandrin, P. Gonçalves, S.
Jaffard)
  • Wavelets Theory and ApplicationsA. Aldroubi,
    A. Antoniadis, E. Candes, A. Cohen, I.
    Daubechies, R. Devore, A. Grossmann, F.
    Hlawatsch, Y. Meyer, R. Ryan, B. Torresani, M.
    Unser, M. Vetterli
  • Multifractals Theory and Applications
  • A. Arnéodo, E. Bacry, L. Biferale, S. Cohen, F.
    Mendivil, Y. Meyer, R. Riedi, M. Teich, C.
    Tricot, D. Veitch

http//wama2004.org
Write a Comment
User Comments (0)
About PowerShow.com