Title: Wavelets: a versatile tool
1Wavelets a versatile tool
- Signal Processing Adaptive affine
- time-frequency representation
- Statistics existence test of moments
Paulo Gonçalves INRIA Rhône-Alpes, France On
leave _at_ IST ISR (2003-2004)
IST-ISR January 2004
2PDEs applied to Time Frequency Representations
- Julien Gosme (UTT, France)
- Pierre Borgnat (IST-ISR)
- Etienne Payot (Thalès, France)
3Outline
- Atomic linear decompositions
- Classes of energetic distributions
- Smoothing to enhance readability
- Diffusion equations adaptive smoothing
- Open issues
4Combining time and frequencyFourier transform
- s(t)
- s(t) lt s(.) , d(.-t) gt
- s(t) lt S(.) , ei2pt. gt
- S(f)
- S(f) lt s(.) , ei2pf. gt
- S(f) lt S(.) , d(.-f) gt
Blind to non stationnarities!
u
?
5Combining time and frequencyNon Stationarity
Intuitive
Fourier
x(t)
X(f)
6Combining time and frequencyShort-time Fourier
Transform
lt s(.) , d(. f) gt
lt s(.) , gt,f(.) gt Q(t,f)
lts(.) , TtFf g0(.) gt
7Combining time and frequencyWavelet Transform
frequency
time
lt s(.) , TtDa ?0 gt O(t,f f0/a)
8Combining time and frequencyQuadratic classes
9Smoothing to enhance readability Quadratic
classes
NON ADAPTIVE SMOOTHING
10SmoothingHeat Equation and Diffusion
Uniform gaussian smoothing as solution of the
Heat Equation (Isotropic diffusion)
11Adaptive SmoothingAnisotropic Diffusion
Locally control the diffusion rate with a signal
dependant time-frequency conductance
12Adaptive SmoothingAnisotropic Diffusion
13Adaptive SmoothingAnisotropic Diffusion
14Combining time and frequencyWavelet Transform
- Frequency dependent resolutions (in time
freq.) (Constant Q analysis) - Orthonormal Basis framework (tight frames)
- Unconditional basis and sparse decompositions
- Pseudo Differential operators
- Fast Algorithms (Quadrature filters)
STFT Constant bandwidth analysis
STFT redundant decompositions (Balian Law Th.)
Good for compression, coding, denoising,
statistical analysis
Good for Regularity spaces characterization,
(multi-) fractal
analysis
Computational Cost in O(N) (vs. O(N log N) for
FFT)
15Combining time and frequencyWavelet Transform
- Frequency dependent resolutions (in time
freq.) (Constant Q analysis) - Orthonormal Basis framework (tight frames)
- Unconditional basis and sparse decompositions
- Pseudo Differential operators
- Fast Algorithms (Quadrature filters)
STFT Constant bandwidth analysis
STFT redundant decompositions (Balian Law Th.)
Good for compression, coding, denoising,
statistical analysis
Good for Regularity spaces characterization,
(multi-) fractal
analysis
Computational Cost in O(N) (vs. O(N log N) for
FFT)
16Affine classTime-scale shifts covariance
17Affine diffusionTime-scale covariant heat
equations
Axiomatic approach of multiscale analysis (L.
Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel)
18Affine diffusionTime-scale covariant heat
equations
Affine Diffusion scheme
19Affine diffusionOpen Issues
- Corresponding Green function (Klauder)?
- Corresponding operator
- linear?
- integral?
- affine convolution?
- Stopping criteria?
- (Approached) reconstruction formula?
- Matching pursuit, best basis selection
- Curvelets, edgelets, ridgelets, bandelets,
wedgelets,
20Wavelet And Multifractal Analysis (WAMA)Summer
School in Cargese (Corsica), July 19-31, 2004(P.
Abry, R. Baraniuk, P. Flandrin, P. Gonçalves, S.
Jaffard)
- Wavelets Theory and ApplicationsA. Aldroubi,
A. Antoniadis, E. Candes, A. Cohen, I.
Daubechies, R. Devore, A. Grossmann, F.
Hlawatsch, Y. Meyer, R. Ryan, B. Torresani, M.
Unser, M. Vetterli - Multifractals Theory and Applications
- A. Arnéodo, E. Bacry, L. Biferale, S. Cohen, F.
Mendivil, Y. Meyer, R. Riedi, M. Teich, C.
Tricot, D. Veitch
http//wama2004.org