Quantum control using diabatic and adibatic transitions - PowerPoint PPT Presentation

About This Presentation
Title:

Quantum control using diabatic and adibatic transitions

Description:

We use adiabatic and rapid transitions to travel in the spectra ... Avoid adiabatic transitions in very small avoided crossings ... – PowerPoint PPT presentation

Number of Views:51
Avg rating:3.0/5.0
Slides: 48
Provided by: dfU4
Category:

less

Transcript and Presenter's Notes

Title: Quantum control using diabatic and adibatic transitions


1
Quantum control using diabatic and adibatic
transitions
Diego A. Wisniacki
University of Buenos Aires
2
Colaboradores-Referencias
Colaborators
  • Gustavo Murgida (UBA)
  • Pablo Tamborenea (UBA)

  • Short version ---gt PRL 07, cond-mat/0703192
  • APS ICCMSE

3
Outline
  • Introduction
  • The system quasi-one-dimensional quantum dot
    with 2 e inside
  • Landau- Zener transitions in our system
  • The method traveling in the spectra
  • Results
  • Final Remarks

4
Introduction
Desired state
5
Introduction
  • Main idea of our work

To travel in the spectra of eigenenergies
Control parameter
6
Introduction
  • To navigate the spectra

7
Introduction
  • To navigate the spectra

8
Introduction
  • To navigate the spectra

9
Introduction
  • To navigate the spectra

10
The system
Quasi-one-dimensional quantum dot
Confining potential doble quantum well
filled with 2 e
11
Colaboradores-Referencias
The system
The Hamiltonian of the system
Time dependent electric field
Coulombian interaction
Note no spin term-we assume total spin
wavefunction singlet
12
The system
Interaction induce chaos
PRE 01 Fendrik, Sanchez,Tamborenea
System 1 well, 2 e
Nearest neighbor spacing distribution
13
Colaboradores-Referencias
The system
  • We solve numerically the time independent
    Schroeringer eq.
  • Electric field is considered as a parameter
  • Characteristics of the spectrum (eigenfunctions
    and eigenvalues)

14
The system
Spectra
  • lines
  • Avoided crossings

15
Colaboradores-Referencias
The system
Cero slope delocalized
Negative slope e in the left dot
Positive slope e in the right dot
16
Landau-Zener transitions in our model
LZ model
hyperbolas
Linear functions
17
Landau-Zener transitions in our model
LZ model
if
Probability to remain in the state 1
Probability to jump to the state 2
18
Landau-Zener transitions in our model
LZ model
Adibatic transitions
Diabatic transitions
19
Colaboradores-Referencias
Landau-Zener transitions in our model
We study the prob. transition in several ac. For
example
Full system
LZ prediction
2 level system
E(t)
20
Colaboradores-Referencias
Landau-Zener transitions in our model
We study the prob. transition in several ac. For
example
2 level system
Full system
21
The method navigating the spectrum
  • Choose the initial state and the desired final
    state in the spectra
  • Find a path in the spectra
  • Avoid adiabatic transitions in very small avoided
    crossings
  • We use adiabatic and rapid transitions to travel
    in the spectra
  • If it is posible try to make slow variations of
    the parameter

22
Results
  • First example localization of the e in the
    left dot

EPL 01 Tamborenea, Metiu (sudden switch method)
LL
23
Results
  • First example localization of the e in the
    left dot

EPL 01 Tamborenea, Metiu (sudden switch method)
24
Colaboradores-Referencias
Results
  • Second example complex path

25
Colaboradores-Referencias
Results
  • Second example complex path

26
Colaboradores-Referencias
Results
  • Second example complex path

27
Colaboradores-Referencias
Results
  • Second example complex path

28
Colaboradores-Referencias
Results
  • Second example complex path

29
Colaboradores-Referencias
Results
  • Second example complex path

30
Colaboradores-Referencias
Results
  • Second example complex path

31
Colaboradores-Referencias
Results
  • Second example complex path

32
Colaboradores-Referencias
Results
  • Second example complex path

33
Colaboradores-Referencias
Results
  • Second example complex path

34
Colaboradores-Referencias
Results
  • Second example complex path

35
Colaboradores-Referencias
Results
  • Third example more complex path

36
Results
37
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

38
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

39
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

40
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

41
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

42
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

43
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

44
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

45
Colaboradores-Referencias
The method questions
  • Is our method generic?

We need well defined avoided crossings
Stadium billiard
LZ transitions Sanchez, Vergini DW PRE 96
??a/R
  • Is our method experimentally possible?

46
Colaboradores-Referencias
Final Remarks
  • We found a method to control quantum systems
  • Our method works well
  • With our method it is posible to travel in the
    spectra of the system
  • We can control several aspects of the wave
    function
  • (localization of the e, etc).

47
Colaboradores-Referencias
Final Remarks
  • We can also obtain a combination of adiabatic
    states
  • Control of chaotic systems
  • Decoherence??? Next step???.
Write a Comment
User Comments (0)
About PowerShow.com