Title: Quantum control using diabatic and adibatic transitions
1Quantum control using diabatic and adibatic
transitions
Diego A. Wisniacki
University of Buenos Aires
2Colaboradores-Referencias
Colaborators
- Gustavo Murgida (UBA)
- Pablo Tamborenea (UBA)
- Short version ---gt PRL 07, cond-mat/0703192
- APS ICCMSE
3Outline
- Introduction
- The system quasi-one-dimensional quantum dot
with 2 e inside - Landau- Zener transitions in our system
- The method traveling in the spectra
- Results
- Final Remarks
4Introduction
Desired state
5Introduction
To travel in the spectra of eigenenergies
Control parameter
6Introduction
7Introduction
8Introduction
9Introduction
10The system
Quasi-one-dimensional quantum dot
Confining potential doble quantum well
filled with 2 e
11Colaboradores-Referencias
The system
The Hamiltonian of the system
Time dependent electric field
Coulombian interaction
Note no spin term-we assume total spin
wavefunction singlet
12The system
Interaction induce chaos
PRE 01 Fendrik, Sanchez,Tamborenea
System 1 well, 2 e
Nearest neighbor spacing distribution
13Colaboradores-Referencias
The system
- We solve numerically the time independent
Schroeringer eq. - Electric field is considered as a parameter
- Characteristics of the spectrum (eigenfunctions
and eigenvalues)
14The system
Spectra
15Colaboradores-Referencias
The system
Cero slope delocalized
Negative slope e in the left dot
Positive slope e in the right dot
16Landau-Zener transitions in our model
LZ model
hyperbolas
Linear functions
17Landau-Zener transitions in our model
LZ model
if
Probability to remain in the state 1
Probability to jump to the state 2
18Landau-Zener transitions in our model
LZ model
Adibatic transitions
Diabatic transitions
19Colaboradores-Referencias
Landau-Zener transitions in our model
We study the prob. transition in several ac. For
example
Full system
LZ prediction
2 level system
E(t)
20Colaboradores-Referencias
Landau-Zener transitions in our model
We study the prob. transition in several ac. For
example
2 level system
Full system
21The method navigating the spectrum
- Choose the initial state and the desired final
state in the spectra
- Find a path in the spectra
- Avoid adiabatic transitions in very small avoided
crossings
- We use adiabatic and rapid transitions to travel
in the spectra
- If it is posible try to make slow variations of
the parameter
22Results
- First example localization of the e in the
left dot
EPL 01 Tamborenea, Metiu (sudden switch method)
LL
23Results
- First example localization of the e in the
left dot
EPL 01 Tamborenea, Metiu (sudden switch method)
24Colaboradores-Referencias
Results
- Second example complex path
25Colaboradores-Referencias
Results
- Second example complex path
26Colaboradores-Referencias
Results
- Second example complex path
27Colaboradores-Referencias
Results
- Second example complex path
28Colaboradores-Referencias
Results
- Second example complex path
29Colaboradores-Referencias
Results
- Second example complex path
30Colaboradores-Referencias
Results
- Second example complex path
31Colaboradores-Referencias
Results
- Second example complex path
32Colaboradores-Referencias
Results
- Second example complex path
33Colaboradores-Referencias
Results
- Second example complex path
34Colaboradores-Referencias
Results
- Second example complex path
35Colaboradores-Referencias
Results
- Third example more complex path
36Results
37Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
38Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
39Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
40Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
41Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
42Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
43Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
44Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
45Colaboradores-Referencias
The method questions
We need well defined avoided crossings
Stadium billiard
LZ transitions Sanchez, Vergini DW PRE 96
??a/R
- Is our method experimentally possible?
46Colaboradores-Referencias
Final Remarks
- We found a method to control quantum systems
- With our method it is posible to travel in the
spectra of the system
- We can control several aspects of the wave
function - (localization of the e, etc).
47Colaboradores-Referencias
Final Remarks
- We can also obtain a combination of adiabatic
states
- Control of chaotic systems
- Decoherence??? Next step???.