Title: AA 4362 Astrodynamics
1AA 4362 Astrodynamics
Newton's Laws as Applied to "Rocket Science" ...
its not just a job ... its an adventure
Week 9
2How Much Fuel?
3Newtons First Law
4 Newtons Second Law
5Newtons Third Law
6Newtons Third Law (contd)
7Newtons Third Law (contd)
8Newtons Third Law (contd)
9Newtons Third Law (concluded)
10Before Solving the RocketEquation .. Its
convenient to introduce a Few Additional terms
11Effective Exhaust Velocity
12Effective Exhaust Velocity (contd)
13Total Impulse
14 Specific Impulse
15 Specific Impulse (contd)
16 Specific Impulse (contd)
17 Specific Impulse (contd)
18 Specific Impulse (contd)
19 Specific Impulse (contd)
20 Specific Impulse (concluded)
21Relating Isp to Uex
22 Maximum Available DV
23 Maximum Available DV (contd)
Re-arranging Variables
24 Maximum Available DV (contd)
25Maximum Available DV (contd)
26 Maximum Available DV (concluded)
Derived for Horizontal Rocket Motion
27What happens on Vertical Launch?
28What happens on Vertical Launch? (contd)
29What happens on Vertical Launch? (contd)
30(No Transcript)
31Required DV to LEO
32Relating DV to Propellant Mass Fraction
33Relating DV to Propellant Mass Fraction (contd)
34Fuel Budget Equation
35Fuel Budget Equation (contd)
A little DV .. Can cost you A lot of Fuel
36Propellant Mass Fraction Example Calculations
37Question What is mean IspOf Shuttle at Launch?
38Shuttle Required Pmf 7.9
How can the shuttle reach Orbit?
39How Can Shuttle Reach Orbit?
Stage 1 SRBs burn for 123 sec.
Stage 1 Effective Isp SRBs
sec
Ignore atmospheric losses
40How Can Shuttle Reach Orbit? (contd)
Stage 1 SRBs burn for 123 sec.
Stage 1 Effective Isp SSMEs
sec
41How Can Shuttle Reach Orbit? (contd)
Stage 1 Compute mean Isp
42How Can Shuttle Reach Orbit? (contd)
Stage 1 Compute available DV
43How Can Shuttle Reach Orbit? (contd)
Stage 2 Mean Isp
Stage 2 Dry mass
264,950 lbs
44How Can Shuttle Reach Orbit? (contd)
Stage 2 Propellant mass fraction
Stage 2 Compute available DV
45How Can Shuttle Reach Orbit? (contd)
Total available DV (ignoring atmospheric
losses)
8380.66 m/sec
46 8380.66 m/sec
So thats! how the shuttle reaches orbit
478380.66 m/sec
7.5 for atmospheric losses (dragengine
performance)
Max shuttle altitude
48Propellant Mass FractionExample Calculations
(contd)
49Propellant Mass FractionExample Calculations
(contd)
50Propellant Mass FractionExample Calculations
(concluded)
51 A Real World Example
Mean Isp 453.3
52 A Real World Example (contd)
53 A Real World Example (contd)
DV required for Orbit
54 A Real World Example (contd)
55 A Real World Example (contd)
56 A Real World Example (contd)
57 A Real World Example (contd)
58 A Real World Example (contd)
59 A Real World Example (contd)
60 A Real World Example (concluded)
61(No Transcript)
62AA 4262 Astrodynamics
Homework 14
Applications of the Rocket-Equation Calculating
the Fuel Budget for an Orbital Phasing Maneuver
of a GeoStationary Satellite
63TTC Satellite
TTC satellite used to monitor pacific coast
battle has failed NACSOC has decided to
transfer the functions of a spare Atlantic
battle group satellite to the pacific until a
replacement can be launched design an
Orbital phasing Maneuver that Allows Transfer of
a GEO Synchronous Communication Satellite from
40.43 west Longitude To 118.15 west longitude
64Phasing Maneuver
65Phasing Maneuver (part 2)
Design a Reverse Orbital Maneuver that Puts
the Satellite Back to the Original Longitude
after Mission has been accomplished
66What To Compute
Compute Phasing Orbit
Parameters Phasing Orbit Period
Required DV1, DV2 Assume Rmin gt
32,000 km (to stay above Van Allen belts)
Note It may take Multiple orbits of
Phasing Orbit to accomplish this task
67What To Compute (contd)
Compute Burn time for Transfer
Orbit Insertion Burn Time for
Final Orbit Insertion Required
Fuel Budget for DV1, DV2
68Parameters of the Problem
Original Longitude 40 deg, 40 min
West Destination Longitude 118 deg, 15 min West
69Parameters of the Problem (contd)
70Parameters of the Problem (Concluded)
Fthruster 0.500 kNt Spacecraft mass
1000 kg Dry