Title: Time Hierarchies for Heuristic Algorithms
1Time Hierarchies for Heuristic Algorithms
- Konstantin Pervyshev
- UCSD
2Outline
- Introduction
- known/unknown about time hierarchies
- why heuristics
- One sketch
- time hierarchy for heuristics NP
- via error-correction
3Introduction
4Time Hierarchies
- Problems having odd complexity
- O(n100) and not much less
- Proven for
- any syntactic model (like P NP)
- no semantic model (like BPP)
5Syntactic vs. Semantic
- Syntactic models
- Syntactically correct machines
- Examples P, NP, coNP, ParityP
- Semantic models
- Additional semantic constraints
- Examples BPP, AM, UP
6Open Question
- Time hierarchies for semantic models
- probabilistic algorithms (BPP / RP / ZPP)
- Arthur-Merlin Merlin-Arthur games (AM / MA)
- unambigous machines (UP)
- other semantic classes
7Non-Traditional Settings
Time Hierarchies in Other Settings
Slightly non-uniform algorithms Barak02
Heuristic algorithms Fortnow,Santhanam04
input x of length n (short) advice an
make mistakes on d(n)-fraction of inputs
8Time Hierarchies for1-Bit Non-Uniform Algorithms
- Syntactic models
- any model/1
- Semantic models
- BPP/1 BQP/1 Fortnow, Santhanam04
- RP/1 Fortnow, Santhanam, Trevisan05
- any model/1 van Melkebeek, P. 06
9Time Hierarchies forHeuristic Algorithms
- Syntactic models
- any model closed under complement
- Unknown those that are not closed
- (think of heurNP)
- Semantic models
- heurBPP heurBQP
- Fortnow, Santhanam04
- Unknown any other
10Scope of This Talk
Time Hierarchies in Other Settings
Slightly non-uniform DONE
Heuristic THIS WORK
11Our ResultsMore Time Hierarchies for Heuristics
- Syntactic models
- any model closed under majority
- (NP, co-NP, alternation classes)
- Semantic models
- some more probabilistic models
- (AM, MA, a stronger hierarchy for BPP)
12Our Approach
- (on the example of heuristic NP)
13Hierarchies for NP
- NP not subset of NTimen
- poly-time N vs. linear-time Mi
- for some x, N(x) ? Mi(x)
- NP not subset of heur1/21/na NTimen
- whatever Mi, for some n,
- Prx in 0,1n N(x) ? Mi(x) gt 1/2-1/na
14Non-Heuristic CaseReview
- Assume that for every x, N(x) Mi(x)
- Construct N so that for some x,
- N(x) ? Mi(x)
- Hence, a contradiction
15Non-Heuristic CaseReview
xk 00 of length k
b Mi(xn)
we want N(xn) b
we can N(x2n) b
16Non-Heuristic CaseReview
we need N(xk) N(xk1)
Mi(xk1) N(xk1) (by assumption)
N(xk) Mi(xk1) (by construction)
17Heuristic Case
- weaker assumption
- for any n,
- Prx in 0,1n Mi(x) N(x) gt 1/21/na
18Transmission Failure
we need N(xk) N(xk1)
Mi(xk1) ? N(xk1) (by assumption)
N(xk) Mi(xk1) (by construction)
19Repairing the Channel
- Question can we repair the channel ?
- Answer yes,
- use error-correction!
- Repetition code ( b b b b )
20High-Level View
Yk 0,1k
b maj x in Yn Mi(x)
we want N(x) b for any x in Yn
we can N(x) b for any x in Y2n
21One Step of Transmission
N(x) b for any x in Yk1 codeword of b
N(x) b for any x in Yk recovered codeword of
b
maj x in Yk1 Mi(x) b corrupted message
22Codeword Recovery
N(x) b (almost) for any x in Yk recovered
codeword of b
Expanders
maj x in Yk1 Mi(x) b corrupted message
Q.E.D.
23A few words about heuristic BPP
- heur1-1/naBPP
- not subset of
- heur1/21/na BPTimen
24Heuristic BPP
- More easy
- compute majority by estimating
- ? Prx in Yk1 Mi(x) 1
- comparing ? to a threshold ½
- More difficult
- N should be semantically correct
- on different inputs, use different thresholds
25Results
- NP
- not subset of
- heur1/21/na NTimen
- heur1-1/na AM/MA/BPP
- not subset of
- heur1/21/na AM/MA/BPTimen
26Open Questions
- Time hierarchies for heuristic RP/ZPP
- heur1-e NP vs. heur½ NTimen
- heur1-e BPP vs. heur½ BPTimen
- Time hierarchies for non-heuristic semantic
models
27Have a safe trip!
- pervyshev _at_ cs.ucsd.edu