Time Hierarchies for Heuristic Algorithms - PowerPoint PPT Presentation

About This Presentation
Title:

Time Hierarchies for Heuristic Algorithms

Description:

O(n100) and not much less. Proven for. any syntactic model ... Arthur-Merlin & Merlin-Arthur games (AM / MA) unambigous machines (UP) other semantic classes ... – PowerPoint PPT presentation

Number of Views:61
Avg rating:3.0/5.0
Slides: 28
Provided by: csewe4
Learn more at: https://cseweb.ucsd.edu
Category:

less

Transcript and Presenter's Notes

Title: Time Hierarchies for Heuristic Algorithms


1
Time Hierarchies for Heuristic Algorithms
  • Konstantin Pervyshev
  • UCSD

2
Outline
  • Introduction
  • known/unknown about time hierarchies
  • why heuristics
  • One sketch
  • time hierarchy for heuristics NP
  • via error-correction

3
Introduction
4
Time Hierarchies
  • Problems having odd complexity
  • O(n100) and not much less
  • Proven for
  • any syntactic model (like P NP)
  • no semantic model (like BPP)

5
Syntactic vs. Semantic
  • Syntactic models
  • Syntactically correct machines
  • Examples P, NP, coNP, ParityP
  • Semantic models
  • Additional semantic constraints
  • Examples BPP, AM, UP

6
Open Question
  • Time hierarchies for semantic models
  • probabilistic algorithms (BPP / RP / ZPP)
  • Arthur-Merlin Merlin-Arthur games (AM / MA)
  • unambigous machines (UP)
  • other semantic classes

7
Non-Traditional Settings
Time Hierarchies in Other Settings
Slightly non-uniform algorithms Barak02
Heuristic algorithms Fortnow,Santhanam04
input x of length n (short) advice an
make mistakes on d(n)-fraction of inputs
8
Time Hierarchies for1-Bit Non-Uniform Algorithms
  • Syntactic models
  • any model/1
  • Semantic models
  • BPP/1 BQP/1 Fortnow, Santhanam04
  • RP/1 Fortnow, Santhanam, Trevisan05
  • any model/1 van Melkebeek, P. 06

9
Time Hierarchies forHeuristic Algorithms
  • Syntactic models
  • any model closed under complement
  • Unknown those that are not closed
  • (think of heurNP)
  • Semantic models
  • heurBPP heurBQP
  • Fortnow, Santhanam04
  • Unknown any other

10
Scope of This Talk
Time Hierarchies in Other Settings
Slightly non-uniform DONE
Heuristic THIS WORK
11
Our ResultsMore Time Hierarchies for Heuristics
  • Syntactic models
  • any model closed under majority
  • (NP, co-NP, alternation classes)
  • Semantic models
  • some more probabilistic models
  • (AM, MA, a stronger hierarchy for BPP)

12
Our Approach
  • (on the example of heuristic NP)

13
Hierarchies for NP
  • NP not subset of NTimen
  • poly-time N vs. linear-time Mi
  • for some x, N(x) ? Mi(x)
  • NP not subset of heur1/21/na NTimen
  • whatever Mi, for some n,
  • Prx in 0,1n N(x) ? Mi(x) gt 1/2-1/na

14
Non-Heuristic CaseReview
  • Assume that for every x, N(x) Mi(x)
  • Construct N so that for some x,
  • N(x) ? Mi(x)
  • Hence, a contradiction

15
Non-Heuristic CaseReview
xk 00 of length k
b Mi(xn)
we want N(xn) b
we can N(x2n) b
16
Non-Heuristic CaseReview
we need N(xk) N(xk1)
Mi(xk1) N(xk1) (by assumption)
N(xk) Mi(xk1) (by construction)
17
Heuristic Case
  • weaker assumption
  • for any n,
  • Prx in 0,1n Mi(x) N(x) gt 1/21/na

18
Transmission Failure
we need N(xk) N(xk1)
Mi(xk1) ? N(xk1) (by assumption)
N(xk) Mi(xk1) (by construction)
19
Repairing the Channel
  • Question can we repair the channel ?
  • Answer yes,
  • use error-correction!
  • Repetition code ( b b b b )

20
High-Level View
Yk 0,1k
b maj x in Yn Mi(x)
we want N(x) b for any x in Yn
we can N(x) b for any x in Y2n
21
One Step of Transmission
N(x) b for any x in Yk1 codeword of b
N(x) b for any x in Yk recovered codeword of
b
maj x in Yk1 Mi(x) b corrupted message
22
Codeword Recovery
N(x) b (almost) for any x in Yk recovered
codeword of b
Expanders
maj x in Yk1 Mi(x) b corrupted message
Q.E.D.
23
A few words about heuristic BPP
  • heur1-1/naBPP
  • not subset of
  • heur1/21/na BPTimen

24
Heuristic BPP
  • More easy
  • compute majority by estimating
  • ? Prx in Yk1 Mi(x) 1
  • comparing ? to a threshold ½
  • More difficult
  • N should be semantically correct
  • on different inputs, use different thresholds

25
Results
  • NP
  • not subset of
  • heur1/21/na NTimen
  • heur1-1/na AM/MA/BPP
  • not subset of
  • heur1/21/na AM/MA/BPTimen

26
Open Questions
  • Time hierarchies for heuristic RP/ZPP
  • heur1-e NP vs. heur½ NTimen
  • heur1-e BPP vs. heur½ BPTimen
  • Time hierarchies for non-heuristic semantic
    models

27
Have a safe trip!
  • pervyshev _at_ cs.ucsd.edu
Write a Comment
User Comments (0)
About PowerShow.com