Midrapidity forward rapidity - PowerPoint PPT Presentation

1 / 33
About This Presentation
Title:

Midrapidity forward rapidity

Description:

... at RHIC: recent results from BRAHMS. Dieter Roehrich. UiB ... BRAHMS: Submitted to PRL, March 2004. Cronin-like enhancement at =0 ... The BRAHMS Collaboration ... – PowerPoint PPT presentation

Number of Views:62
Avg rating:3.0/5.0
Slides: 34
Provided by: Dr2283
Category:

less

Transcript and Presenter's Notes

Title: Midrapidity forward rapidity


1
Strangeness at RHIC recent results from BRAHMS
Dieter Roehrich UiB for the BRAHMS collaboration
  • Midrapidity ? forward rapidity
  • Stopping
  • Pion and kaon production
  • Particle composition at intermediate pt
  • Nuclear modification factor

AuAu at ?sNN 130GeV AuAu at ?sNN
200GeV dAu at ?sNN 200GeV pp at ?sNN
200GeV AuAu at ?sNN 62.4GeV
2
The BRAHMS experiment
3
Net-proton rapidity distribution
dN dy
  • RHIC
  • central AuAu
  • Npart357?8

BRAHMS, PRL, in print nucl-ex/0312023
4
Stopping (1)
5
Stopping (2)
Net-baryon after feed-down neutron corrections
Gaussians in pz
6 order polynomial
Rapidity loss (Npart 357 ? 10)


6
Energy loss
  • Upper limit to rapidity loss?
  • Energy loss

?E 25.7 ? 2.1 TeV ?E/nucleon 72 ? 6 GeV
7
Stopping summary
  • Net-baryon poor midrapidity region
  • dN(net-protons)/dy 7
  • Total-baryon rich midrapidity region
  • dN(all baryons)/dy ? 65
  • Largest observed rapidity loss
  • lt?ygt 2
  • as large as in pA
  • Stopping power
  • central AuAu at RHIC 72
  • central SS at SPS 58
  • pp collisions ? 50

8
Rapidity distributions of identified hadrons
Produced particles Gaussian
shapes Integrating the Gaussians gives
Not corrected for weak decays
9
Energy dependence of widths
  • Landau hydrodynamics
  • Gaussian rapidity distribution
  • Observed in hadron - hadron collisions
  • Width ? depends only on c.m. energy
  • Finite boost-invariant region for thermodynamic
    variables
  • Boost-invariant region ? lt 2
  • Gaussian rapidity distribution

L.D. Landau, Izv. Akad. Nauk SSSR 17 (1953)
52 P.Carruthers, M.Duong-van, PRD 8 (1973) 859
T. Hirano, Y. Nara, nucl-th/0404039
10
Transverse Flow (1)
  • Blast Wave fits at y0,1,2,3 (T, ?s, ? free,
    Rmax13fm)

Fix a,T
Fix a,b
Less flow at forward rapidities
11
Transverse Flow (2)
  • 3D-Hydro
  • CGC initial condition
  • Ideal massless QGP EoS

nucl-th/0404039
12
Corrections for feed-down from weak decays
Towards 4? multiplicity
Pion contamination by neutral kaon decays
  • Proton spectra contain approx. 55 of all
    hyperon decays
  • Pion spectra contain approx. 35 of all K0S
  • Corrected 4? multiplicity
  • Integrating the Gaussians and adding unseen
    weak decay products gives Nch 4620 ? 50
  • Integrating the pseudo-rapidity spectra gives
    Nch 4790 ? 400

13
Strangeness production (1)
Rapidity dependence of K/? ratio
Energy dependence of K/? ratio
no change for
Divergence at higher y
Over the full phase space and corrected for weak
decays K/? 17.0 ? 1.5 (syst) K?/?? 14.2
? 2.0 (syst)
Y lt 1 consistent with Hadron Gas Stat. Model
Phys. Lett. B 518 (2001) 41
14
Strangeness production (2)
Energy dependence of K/? ratio at midrapidity
  • Preliminary 63 GeV data follow trend

See Djamel Ouerdanes talk on Thursday
afternoon (Parallel session 2)
15
Strangeness production (3)
K-/K dependence on p/p
See Michael Murrays talk on Friday
afternoon (Parallel session 4)
63 GeV
BRAHMS, PRL90 (2003) 102301 Tconstant, ?B varies
with y
16
Strangeness production (4)
  • Input 4? yields into thermal model
  • Preliminary weak decay correction
  • 4? fit results
  • T 153 - 4 MeV
  • ?S 0.85 - 0.02
  • ?B 96 - 4 MeV
  • Midrapidity results
  • T 160 - 10 MeV
  • ?S ? 1
  • ?B ? 25 MeV

F. Becattini
STAR
17
Particle Ratios in pp interactions
18
Baryon enhancement at intermediate pT
  • Midrapidity
  • p/? ratio ? 1
  • Enhancement compared to pp, dAu
  • Forward rapidity
  • p/? ratio ? 0.5
  • Flow effect?

pp
19
Kaons at intermediate pT
preliminary
pp
  • Midrapidity Forward rapidity
  • K/? ratio increases with transverse momentum
  • K/? ratio ? 0.7 at 2 GeV/c

20
Nuclear Modification Factor
  • Transverse momentum spectra of charged hadrons
    and identified particles at different rapidities
    (0 lt y lt 3.2)
  • Nuclear modification factor
  • Rapidity dependence of RdAu and RAu helps to
    distinguish final from initial state effects and
    to disentangle different initial conditions

21
Arsene et al. PRL2003
Nuclear Modification Factor AuAu
  • Large high pT suppression in central AuAu
  • Even larger suppression at forward rapidity

22
Are Pions and Protons suppressed?
?0
?2.2
preliminary
  • Pions are suppressed at all rapidities
  • Protons are not suppressed up to pt 3 GeV/c
  • Very strong pion suppression at forward rapidity

23
Nuclear Modification Factor dAu
charged hadrons
  • High pT enhancement in dAu collisions at
    ?sNN200 GeV
  • Comparing AuAu to dAu at midrapidity
  • ? Strong effect of dense medium
  • ? Partonic energy loss

24
Nuclear Modification Factor
Cronin effect Initial state multiple scattering
leading to Cronin enhancement (RAAgt1)
  • Midrapidity
  • dAu
  • Central AuAu
  • Forward rapiditiesWhere do shadowing/ gluon
    saturation effects come in?

Jet-quenching
  • Shadowing/saturation
  • depletion of low-x partons
  • due to
  • - coherent multiple scattering
  • gluon saturation
  • e.g. Color Glass Condensate (CGC)

25
RdAu at different Pseudorapidities
BRAHMS Submitted to PRL, March 2004
  • Cronin-like enhancement at ?0
  • Clear suppression as ? changes from 0 to 3.2
  • But ratio of dn/d? exhibits similar trend

26
Centrality Dependence of Enhancement/Suppression
in dAu
  • Change of RCP from mid- to forward rapidities is
    stronger for central collisions than for
    semi-peripheral collisions

27
CGC Saturation Model (1)
  • CGC describes dn/d? and predicts
  • But HIJING and AMPT also do well

Nucl.Phys. A 730 (2004) 448
28
CGC Saturation Model (2)
  • CGC model describes RdAu and RCP
  • Suppression comes in at y gt 0.2

D. Kharzeev, Y.V. Kovchegov, K. Tuchin,
hep-ph/0405054 (2004)
29
Spare
BUT (1) - Pseudorapidity Distribution in dAu
  • Multiplicity in dAu scales with Npart
  • Enhanced production for ? lt 0
  • Suppression for ? gt 0
  • Modification effects for soft pions, not only for
    high pT
  • Same observation at SPS (NA35, NA49)

PHOBOS data P. Steinberg, QM 2004
30
Spare
BUT (2) - RpA at SPS energies
  • NA49 data
  • 200 GeV pPb
  • as we go forward R decreases
  • B. Boimska, PhD thesis
  • Warsaw Institute forNuclear Studies, May04

31
BUT (3) - pQCD Models (1)
  • pQCD-improved parton model
  • Glauber-type collision geometry
  • Nuclear shadowing
  • Nuclear multiscattering

G.G. Barnafoldi, G. Papp, P. Levai, G. Fai,
nucl-th/0404012 (2004)
See also R. Vogt, hep-ph/0405060 (2004)
  • Increasing strength of standard nuclear shadowing
    with increasing ?
  • Including nuclear multiscattering ? reasonable
    agreement between data and pQCD

See also R. Vogt, hep-ph/0405060 (2004)
32
Summary
  • Central AuAu collisions
  • Stopping rapidity shift of 2 units
  • 72 of energy available for particle production
  • Gaussian rapidity distributions
  • 4? yields
  • Rapidity dependence of K/? ratio
  • Energy dependence of K/? ratio (total yields)
  • Baryon enhancement at intermediate pT
  • Nuclear modification
  • Strong pion suppression at all rapidities - even
    stronger at large ?
  • Protons are not suppressed up to pT 3 GeV/c
  • dAu collisions
  • Nuclear modification
  • Cronin-like enhancement at ?0
  • Clear suppression as ? changes from 0 to 3.2
  • Indication of shadowing/saturation?

33
The BRAHMS Collaboration
  • I.Arsene10,I.G. Bearden7, D. Beavis1, C.
    Besliu10, Y. Blyakhman6, J.Brzychczyk4,
  • B. Budick6,H. Bøggild7 ,C. Chasman1, C. H.
    Christensen7, P. Christiansen7,
  • J.Cibor4,R.Debbe1,J. J. Gaardhøje7,M.
    Germinario7, K. Hagel8,
  • O. Hansen7, H. Ito11, E. Jacobsen7, A. Jipa10,
    J. I. Jordre10, F. Jundt2,
  • C.E.Jørgensen7, E. J. Kim5, T. Kozik3,
    T.M.Larsen12, J. H. Lee1, Y. K.Lee5,
  • G. Løvhøjden2, Z. Majka3, A. Makeev8, B.
    McBreen1, M. Murray8, J. Natowitz8,
  • B. Neuman11,B.S.Nielsen7, K. Olchanski1, D.
    Ouerdane7, R.Planeta4, F. Rami2,
  • D. Roehrich9, B. H. Samset12, S. J. Sanders11,
    I. S. Sgura10, R.A.Sheetz1, Z.Sosin3,
  • P. Staszel7, T.S. Tveter12, F.Videbæk1, R. Wada8
    ,A.Wieloch3,Z. Yin9
  • 1Brookhaven National Laboratory, USA, 2IReS and
    Université Louis Pasteur, Strasbourg, France
  • 3Jagiellonian University, Cracow, Poland,
    4Institute of Nuclear Physics, Cracow, Poland
  • 5Johns Hopkins University, Baltimore, USA, 6New
    York University, USA
  • 7Niels Bohr Institute, Blegdamsvej 17, University
    of Copenhagen, Denmark
  • 8Texas AM University, College Station. USA,
    9University of Bergen, Norway
  • 10University of Bucharest, Romania, 11University
    of Kansas, Lawrence,USA
  • 12 University of Oslo Norway
Write a Comment
User Comments (0)
About PowerShow.com