Title: Midrapidity forward rapidity
1 Strangeness at RHIC recent results from BRAHMS
Dieter Roehrich UiB for the BRAHMS collaboration
- Midrapidity ? forward rapidity
- Stopping
- Pion and kaon production
- Particle composition at intermediate pt
- Nuclear modification factor
AuAu at ?sNN 130GeV AuAu at ?sNN
200GeV dAu at ?sNN 200GeV pp at ?sNN
200GeV AuAu at ?sNN 62.4GeV
2The BRAHMS experiment
3Net-proton rapidity distribution
dN dy
- RHIC
- central AuAu
- Npart357?8
BRAHMS, PRL, in print nucl-ex/0312023
4Stopping (1)
5Stopping (2)
Net-baryon after feed-down neutron corrections
Gaussians in pz
6 order polynomial
Rapidity loss (Npart 357 ? 10)
6Energy loss
- Upper limit to rapidity loss?
- Energy loss
?E 25.7 ? 2.1 TeV ?E/nucleon 72 ? 6 GeV
7Stopping summary
- Net-baryon poor midrapidity region
- dN(net-protons)/dy 7
- Total-baryon rich midrapidity region
- dN(all baryons)/dy ? 65
- Largest observed rapidity loss
- lt?ygt 2
- as large as in pA
- Stopping power
- central AuAu at RHIC 72
- central SS at SPS 58
- pp collisions ? 50
8Rapidity distributions of identified hadrons
Produced particles Gaussian
shapes Integrating the Gaussians gives
Not corrected for weak decays
9Energy dependence of widths
- Landau hydrodynamics
- Gaussian rapidity distribution
- Observed in hadron - hadron collisions
- Width ? depends only on c.m. energy
- Finite boost-invariant region for thermodynamic
variables - Boost-invariant region ? lt 2
- Gaussian rapidity distribution
L.D. Landau, Izv. Akad. Nauk SSSR 17 (1953)
52 P.Carruthers, M.Duong-van, PRD 8 (1973) 859
T. Hirano, Y. Nara, nucl-th/0404039
10Transverse Flow (1)
- Blast Wave fits at y0,1,2,3 (T, ?s, ? free,
Rmax13fm)
Fix a,T
Fix a,b
Less flow at forward rapidities
11Transverse Flow (2)
- 3D-Hydro
- CGC initial condition
- Ideal massless QGP EoS
nucl-th/0404039
12Corrections for feed-down from weak decays
Towards 4? multiplicity
Pion contamination by neutral kaon decays
- Proton spectra contain approx. 55 of all
hyperon decays - Pion spectra contain approx. 35 of all K0S
- Corrected 4? multiplicity
- Integrating the Gaussians and adding unseen
weak decay products gives Nch 4620 ? 50 - Integrating the pseudo-rapidity spectra gives
Nch 4790 ? 400
13Strangeness production (1)
Rapidity dependence of K/? ratio
Energy dependence of K/? ratio
no change for
Divergence at higher y
Over the full phase space and corrected for weak
decays K/? 17.0 ? 1.5 (syst) K?/?? 14.2
? 2.0 (syst)
Y lt 1 consistent with Hadron Gas Stat. Model
Phys. Lett. B 518 (2001) 41
14Strangeness production (2)
Energy dependence of K/? ratio at midrapidity
- Preliminary 63 GeV data follow trend
See Djamel Ouerdanes talk on Thursday
afternoon (Parallel session 2)
15Strangeness production (3)
K-/K dependence on p/p
See Michael Murrays talk on Friday
afternoon (Parallel session 4)
63 GeV
BRAHMS, PRL90 (2003) 102301 Tconstant, ?B varies
with y
16Strangeness production (4)
- Input 4? yields into thermal model
- Preliminary weak decay correction
- 4? fit results
- T 153 - 4 MeV
- ?S 0.85 - 0.02
- ?B 96 - 4 MeV
- Midrapidity results
- T 160 - 10 MeV
- ?S ? 1
- ?B ? 25 MeV
F. Becattini
STAR
17Particle Ratios in pp interactions
18Baryon enhancement at intermediate pT
- Midrapidity
- p/? ratio ? 1
- Enhancement compared to pp, dAu
- Forward rapidity
- p/? ratio ? 0.5
- Flow effect?
pp
19Kaons at intermediate pT
preliminary
pp
- Midrapidity Forward rapidity
- K/? ratio increases with transverse momentum
- K/? ratio ? 0.7 at 2 GeV/c
20Nuclear Modification Factor
- Transverse momentum spectra of charged hadrons
and identified particles at different rapidities
(0 lt y lt 3.2) - Nuclear modification factor
- Rapidity dependence of RdAu and RAu helps to
distinguish final from initial state effects and
to disentangle different initial conditions
21Arsene et al. PRL2003
Nuclear Modification Factor AuAu
- Large high pT suppression in central AuAu
-
- Even larger suppression at forward rapidity
22Are Pions and Protons suppressed?
?0
?2.2
preliminary
- Pions are suppressed at all rapidities
- Protons are not suppressed up to pt 3 GeV/c
- Very strong pion suppression at forward rapidity
23Nuclear Modification Factor dAu
charged hadrons
- High pT enhancement in dAu collisions at
?sNN200 GeV - Comparing AuAu to dAu at midrapidity
- ? Strong effect of dense medium
- ? Partonic energy loss
24Nuclear Modification Factor
Cronin effect Initial state multiple scattering
leading to Cronin enhancement (RAAgt1)
- Midrapidity
- dAu
- Central AuAu
- Forward rapiditiesWhere do shadowing/ gluon
saturation effects come in?
Jet-quenching
- Shadowing/saturation
- depletion of low-x partons
- due to
- - coherent multiple scattering
- gluon saturation
- e.g. Color Glass Condensate (CGC)
25RdAu at different Pseudorapidities
BRAHMS Submitted to PRL, March 2004
- Cronin-like enhancement at ?0
- Clear suppression as ? changes from 0 to 3.2
- But ratio of dn/d? exhibits similar trend
26Centrality Dependence of Enhancement/Suppression
in dAu
- Change of RCP from mid- to forward rapidities is
stronger for central collisions than for
semi-peripheral collisions
27CGC Saturation Model (1)
- CGC describes dn/d? and predicts
- But HIJING and AMPT also do well
Nucl.Phys. A 730 (2004) 448
28CGC Saturation Model (2)
- CGC model describes RdAu and RCP
- Suppression comes in at y gt 0.2
D. Kharzeev, Y.V. Kovchegov, K. Tuchin,
hep-ph/0405054 (2004)
29Spare
BUT (1) - Pseudorapidity Distribution in dAu
- Multiplicity in dAu scales with Npart
- Enhanced production for ? lt 0
- Suppression for ? gt 0
- Modification effects for soft pions, not only for
high pT - Same observation at SPS (NA35, NA49)
PHOBOS data P. Steinberg, QM 2004
30Spare
BUT (2) - RpA at SPS energies
- NA49 data
- 200 GeV pPb
- as we go forward R decreases
- B. Boimska, PhD thesis
- Warsaw Institute forNuclear Studies, May04
-
31BUT (3) - pQCD Models (1)
- pQCD-improved parton model
- Glauber-type collision geometry
- Nuclear shadowing
- Nuclear multiscattering
G.G. Barnafoldi, G. Papp, P. Levai, G. Fai,
nucl-th/0404012 (2004)
See also R. Vogt, hep-ph/0405060 (2004)
- Increasing strength of standard nuclear shadowing
with increasing ? - Including nuclear multiscattering ? reasonable
agreement between data and pQCD
See also R. Vogt, hep-ph/0405060 (2004)
32Summary
- Central AuAu collisions
- Stopping rapidity shift of 2 units
- 72 of energy available for particle production
- Gaussian rapidity distributions
- 4? yields
- Rapidity dependence of K/? ratio
- Energy dependence of K/? ratio (total yields)
- Baryon enhancement at intermediate pT
- Nuclear modification
- Strong pion suppression at all rapidities - even
stronger at large ? - Protons are not suppressed up to pT 3 GeV/c
- dAu collisions
- Nuclear modification
- Cronin-like enhancement at ?0
- Clear suppression as ? changes from 0 to 3.2
- Indication of shadowing/saturation?
33The BRAHMS Collaboration
- I.Arsene10,I.G. Bearden7, D. Beavis1, C.
Besliu10, Y. Blyakhman6, J.Brzychczyk4, - B. Budick6,H. Bøggild7 ,C. Chasman1, C. H.
Christensen7, P. Christiansen7, - J.Cibor4,R.Debbe1,J. J. Gaardhøje7,M.
Germinario7, K. Hagel8, - O. Hansen7, H. Ito11, E. Jacobsen7, A. Jipa10,
J. I. Jordre10, F. Jundt2, - C.E.Jørgensen7, E. J. Kim5, T. Kozik3,
T.M.Larsen12, J. H. Lee1, Y. K.Lee5, - G. Løvhøjden2, Z. Majka3, A. Makeev8, B.
McBreen1, M. Murray8, J. Natowitz8, - B. Neuman11,B.S.Nielsen7, K. Olchanski1, D.
Ouerdane7, R.Planeta4, F. Rami2, - D. Roehrich9, B. H. Samset12, S. J. Sanders11,
I. S. Sgura10, R.A.Sheetz1, Z.Sosin3, - P. Staszel7, T.S. Tveter12, F.Videbæk1, R. Wada8
,A.Wieloch3,Z. Yin9 - 1Brookhaven National Laboratory, USA, 2IReS and
Université Louis Pasteur, Strasbourg, France - 3Jagiellonian University, Cracow, Poland,
4Institute of Nuclear Physics, Cracow, Poland - 5Johns Hopkins University, Baltimore, USA, 6New
York University, USA - 7Niels Bohr Institute, Blegdamsvej 17, University
of Copenhagen, Denmark - 8Texas AM University, College Station. USA,
9University of Bergen, Norway - 10University of Bucharest, Romania, 11University
of Kansas, Lawrence,USA - 12 University of Oslo Norway