Matlab Chapter 2: Array and Matrix Operations - PowerPoint PPT Presentation

1 / 28
About This Presentation
Title:

Matlab Chapter 2: Array and Matrix Operations

Description:

logspace(a,b,n) computes n pts linearly between a and b, then uses them as exponents of 10 ... max(A) vector # of elements, matrix max. of m or n. length(A) ... – PowerPoint PPT presentation

Number of Views:813
Avg rating:3.0/5.0
Slides: 29
Provided by: egr5
Category:

less

Transcript and Presenter's Notes

Title: Matlab Chapter 2: Array and Matrix Operations


1
MatlabChapter 2 Array and Matrix Operations
2
What is a vector?
  • In Matlab, it is a single row (horizontal) or
    column (vertical) of numbers or characters.
  • Vector is one row OR one column
  • Does not have to have anything to do with
    geometry
  • Number of components is not restricted
  • Transpose of row is column, of column is row

3
Vectors in Matlab
  • Various forms for entering row and column
    vectors

gtgt u1234 u 1 2 3 4
gtgt p1,2,3 p 1 2 3
gtgt v329 v 3 5 7 9
gtgt w47 w 4 5 6 7
4
Transposing Vectors
gtgt u u 1 2 3 4 gtgt u' ans
1 2 3 4
  • gtgt p
  • p
  • 1 2 3
  • gtgt p'
  • ans
  • 1
  • 2
  • 3

5
Augmenting Row Vectors
  • gtgt p
  • p
  • 1 2 3
  • gtgt v
  • v
  • 3 5 7 9
  • gtgt zp v
  • z
  • 1 2 3 3 5 7 9

6
Stacking Column Vectors
gtgt qut q 1 2 3 4
3 8 -4
  • gtgt u
  • u
  • 1
  • 2
  • 3
  • 4

gtgt t t 3 8 -4
7
Functions to Generate Vectors
  • linspace(a,b,c) produces c evenly spaced points
    between a and b
  • gtgt linspace(2,4,5)
  • ans
  • 2.0000 2.5000 3.0000 3.5000
    4.0000
  • logspace(a,b,n) computes n pts linearly between a
    and b, then uses them as exponents of 10
  • gtgt logspace(1,3,4)
  • ans
  • 1.0e003
  • 0.0100 0.0464 0.2154 1.0000

8
Matrices
  • A rectangular array of numbers or characters
  • Rows numbered top to bottom
  • Columns numbered left to right
  • Size of array n x m
  • number of rows is always stated first
  • element of array x(k,j)
  • row index is always stated firstkth row, jth col
  • In general, indices can be negative or zero, but
    not in MATLAB
  • Transpose of real matrix interchanges rows and
    columns

9
Transpose Concatenate Matrices
  • gtgt A1,2,34,5,6
  • A
  • 1 2 3
  • 4 5 6
  • A is transpose
  • gtgt A'
  • ans
  • 1 4
  • 2 5
  • 3 6
  • gtgt B4,58,9
  • B
  • 4 5
  • 8 9
  • A,B augments (concatenates rows)
  • ans
  • 1 2 3 4 5
  • 4 5 6 8 9
  • AB stacks (concatenates cols)
  • ans
  • 1 4
  • 2 5
  • 3 6
  • 4 5
  • 8 9

10
Vector Addressing
  • v 1,7,3,8,6,7,3
  • v(4) returns the 4th elementgtgt v(4)
  • ans 8
  • Note parentheses, not square brackets!
  • v(25) returns elements 2 through 5
  • gtgt v(25)
  • ans 7 3 8 6

11
Vector Addressing cont.
  • v 1,7,3,8,6,7,3
  • v() returns the entire vector as a column
  • gtgt v()
  • ans
  • 1
  • 7
  • 3
  • 8
  • 6
  • 7
  • 3

12
Matrix Addressing
  • A
  • 3 6 8
  • 1 5 2
  • A(2,1) returns the element in the 2nd row, 1st
    column
  • ans 1
  • A(,3) returns the 3rd column
  • ans 8 2
  • A(2,) returns the 2nd row
  • ans 1 5 2
  • A(12,23) returns all elements in the 1st and
    2nd rows that are also in 2nd and 3rd columns

13
Matrix Addressing
  • A
  • 3 6 8
  • 1 5 2
  • A(12,23) returns all elements in the 1st and
    2nd rows that are also in 2nd and 3rd
    columns ans 6 8
  • 5 2
  • Extract smaller array
  • B A(12,1 3)B 3 8 1 2

14
Arrays/Matrix Addressing
  • Empty or null array
  • A
  • 3 6 8
  • 1 5 2
  • Remove a column
  • A(,3) A 3 6 1 5
  • Automatic enlargement
  • A(3,5) 22A 3 6 0 0 0
  • 1 5 0 0 0 0 0
    0 0 22

15
Arrays/Matrix Addressing
  • Negative increment reverses order
  • p3,8,4,6
  • rev p(end-11)rev 6 4 8 3
  • A(n) returns the nth element of matrix A, going
    column by columnA 3 6 8
  • 1 5 2
  • A(4)ans 5

16
Arrays/Matrix Addressing
  • A() returns all elements as a column, going
    column by column A 3 6 8
    1 5 2
  • A()ans 3 1 6 5
    8 2

17
Automatic growth of a vector
  • If vector already defined as row or column,
    assigning new element beyond current bounds ?
    automatically grows to fit with intervening
    elements set to 0
  • x 12 x starts as 2-element column vector
  • x(5) 24 x now has 5 elements. x(3) x(4)
    0x
  • 1
  • 2
  • 0
  • 0
  • 24

18
Automatic growth of a vector
  • If variable is not yet vector, assigning element
    beyond 1 defaults to creating a row vector
  • gtgtclear xx
  • xx(4) 12 xx starts as a 4-element row vector
  • xx
  • 0 0 0 12

19
Warning!
  • Use clear to Avoid Errors
  • Be careful
  • suppose you simply want A to have u and v as
    columns
  • A(,1) u
  • A(,2) v
  • A however, still has its previous columns!
  • Use clear to avoid this
  • clear A

20
Vector and Matrix Functions
Play around with all these functions!
21
Array Operations Same operation performed on
each corresponding element of array
  • A
  • 3 7 2
  • 6 -1 5
  • gtgt A3
  • ans
  • 6 10 5
  • 9 2 8
  • gtgt 2A
  • ans
  • 6 14 4
  • 12 -2 10
  • gtgt A.2
  • ans
  • 9 49 4
  • 36 1 25
  • B
  • 4 6 1
  • 3 9 2
  • gtgt AB
  • ans
  • 7 13 3
  • 9 8 7
  • gtgt A.B
  • ans
  • 12 42 2
  • 18 -9 10
  • A./B
  • ans
  • 0.7500 1.1667 2.0000
  • 2.0000 -0.1111 2.5000

22
Math Functions Automatically Apply to Each Element
A 3 7 2 6 -1 5
gtgt sin(A) ans 0.1411 0.6570 0.9093
-0.2794 -0.8415 -0.9589
gtgt sqrt(A) ans 1.7321 2.6458
1.4142 2.4495
0 1.0000i 2.2361
23
Vector Operations
v -4 5 2
  • u
  • 3 2 5

gtgt dot(u,v) ans 8 gtgt cross(u,v) ans
-21 -26 23
gtgt norm(u) ans 6.1644 gtgt this is the
Euclidean length or magnitude
24
Matrix Product
  • C AB is defined if and only if the number of
    columns in A equals the number of rows in B. Then
    C will have the same number of rows as A and the
    same number of columns as B
  • (3x2)(2x4) produces a 3x4
  • (3x2)(3x2) not defined
  • (3x2)(2x3) produces a 3x3
  • (2x3)(3x2) produces a 2x2

25
Matrix Product CAB
  • The (i,j) entry in C is the sum of the products
    of entries from the i-th row of A and the j-th
    column of B

A 4 5 -1 3 2 0
B 3 2 1 5 1 -1 0
3 2 5 1 4
gtgt AB ans 15 -2 3 31 11
4 3 21
26
Matrix Power
  • An means multiply A by itself n times.
  • Can only be done if A is square
  • A.n means raise each element of A to the n-th
    power
  • Can be done with any array A

27
Matrix Division
  • If A and B are matrices, A/B is NOT a defined
    operation in linear algebra!
  • Matlab uses both right (/) and left (\) operator
    symbols for special matrix operations we are not
    covering in this course!
  • 1./A is an array operation creating a new array
    with each entry being the reciprocal of the entry
    in A
  • A./B is an array operation creating a new array
    with each entry being the corresponding entry in
    A divided by the corresponding entry in B

28
Special Matrices
  • eye(n)nxn identity matrix
  • eye(3) 1 0 0
  • 0 1 0
  • 0 0 1
  • ones(m,n) mxn matrix with all entries 1
  • zeros(m,n)mxn matrix with all entries 0
Write a Comment
User Comments (0)
About PowerShow.com