Class Number Class Name - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

Class Number Class Name

Description:

An Approach To Improving The. Physical And Cyber Security Of ... Trenton. 24. Portsmth. Hillsbro. 72. 70. 71. Sargents. 73. NPortsmt. WLima. 35. SpornE. 54. 51 ... – PowerPoint PPT presentation

Number of Views:83
Avg rating:3.0/5.0
Slides: 30
Provided by: Michell2
Category:
Tags: class | name | number | trenton

less

Transcript and Presenter's Notes

Title: Class Number Class Name


1
An Approach To Improving ThePhysical And Cyber
Security Of ABulk Power System With FACTS
Natural Faults
Mariesa Crow Bruce McMillin School of
Materials, Energy Earth Resources Department of
Computer Science University of Missouri-Rolla
Stan Atcitty Power Sources Development
Department Sandia National Laboratory
FACTS
Physical Attack
Funded through the DOE Energy Storage Program
2
Problem Motivation
  • Prevent Cascading failures
  • 2003 Blackout
  • Causes
  • Physical Cyber contingencies
  • Deliberate disruption
  • Hackers
  • Terrorist Activity

3
Proposed Solution
  • Flexible AC Transmission Systems (FACTS)
  • Power Electronic Controllers
  • Means to modify the power flow through a
    particular transmission corridor
  • Integration with energy storage systems

4
US FACTS Installations
NYPA/ Convertible Static Compensator/ 200 MVA
Vermont Electric/ STATCOM/ 130 MVA/ Mitsubishi
AEP/ Unified Power Flow Controller /100 MVA/ EPRI
San Diego GE/ STATCOM/100 MVA Mitsubishi
Northeast Utilities/ STATCOM/ 150 MVA/ Areva
(Alstom)
TVA STATCOM/ 100MVA EPRI
Eagle Pass (Texas) Back-to-back HVDC 37 MVA/ ABB
Austin Energy STATCOM/ 100MVA ABB
CSWS (Texas) STATCOM/ 150 MVA / W-Siemens
5
Decentralized Infrastructures
  • Communication and coordination
  • Scheduling - Distributed Long-Term control
  • Interaction Local Dynamic control
  • Vulnerabilities of the combined physical/ cyber
    system
  • Recovery and protection from physical faults
    and/or cyber attacks and/or human error

6
Identify cascading failure scenarios for test
systems
7
S.Tiffin
Howard
West End
41
Cascading Scenario Outage 48-49
40
42
NwLibrty
39
WMVernon
EastLima
37
44
43
38
54
N.Newark
34
Rockhill
S.Kenton
50
45
51
Zanesvll
48
36
35
Sterling
Philo
WLima
47
49
46
Summerfl
67
W.Lancst
Crooksvl
66
62
MuskngumN
Natrium
Sargents
65
Trenton
73
64
MuskngumS
Kammer
24
CollCrnr
68
23
69
72
Hillsbro
SpornW
71
NPortsmt
TannrsCk
Portsmth
Portsmth
70
Bellefnt
75
74
SthPoint
8
S.Tiffin
Howard
West End
41
Cascading Scenario Outage 48-49
40
42
NwLibrty
39
WMVernon
EastLima
37
44
43
38
54
N.Newark
34
Rockhill
S.Kenton
50
45
51
Zanesvll
48
36
35
Sterling
Philo
WLima
47
49
46
Summerfl
67
W.Lancst
Crooksvl
66
62
MuskngumN
Natrium
Sargents
65
Trenton
73
64
MuskngumS
Kammer
24
CollCrnr
68
23
69
72
Hillsbro
SpornW
71
NPortsmt
TannrsCk
Portsmth
Portsmth
70
Bellefnt
75
74
SthPoint
9
S.Tiffin
Howard
West End
41
Cascading Scenario Outage 48-49
40
42
NwLibrty
39
WMVernon
EastLima
37
44
43
38
54
N.Newark
34
Rockhill
S.Kenton
50
45
51
Zanesvll
48
36
35
Sterling
Philo
WLima
47
49
46
Summerfl
67
W.Lancst
Crooksvl
66
62
MuskngumN
Natrium
Sargents
65
Trenton
73
64
MuskngumS
Kammer
24
CollCrnr
68
23
69
72
Hillsbro
SpornW
71
NPortsmt
TannrsCk
Portsmth
Portsmth
70
Bellefnt
75
74
SthPoint
10
S.Tiffin
Howard
West End
41
Cascading Scenario Outage 48-49
40
42
NwLibrty
39
WMVernon
EastLima
37
44
43
38
54
N.Newark
34
Rockhill
S.Kenton
50
45
51
Zanesvll
48
36
35
Sterling
Philo
WLima
47
49
46
Summerfl
67
W.Lancst
Crooksvl
66
62
MuskngumN
Natrium
Sargents
65
Trenton
73
64
MuskngumS
Kammer
24
CollCrnr
68
23
69
72
Hillsbro
SpornW
71
NPortsmt
TannrsCk
Portsmth
Portsmth
70
Bellefnt
75
74
SthPoint
11
FACTS Placement and Control
12
FACTS Control
  • Distributed Long-Term control algorithms for
    FACTS settings
  • Run by each processor in each FACTS
  • Alternatives
  • Max-flow algorithms
  • Local optimizations
  • Agent-based framework
  • Assessment
  • Reduction of Overloads
  • Computability

13
FACTS Placement
  • Placement
  • Place few FACTS in a large network for maximum
    benefit
  • Evolutionary Algorithms (EAs) will be used to
    place FACTS devices in the network

14
Performance Index Metric
Gradient Descent on PI Metric vs. Maximum Flow
15
FACTS Interaction Laboratory (FIL)
16
FIL Overview
  • Construct a Laboratory System to Study and
    Mitigate
  • Cascading Failures
  • Deleterious effects of interacting power control
    devices
  • Cyber Vulnerabilities
  • Hardware in the Loop (HIL)
  • Real-time Simulation Engine
  • Simulate Existing Power Systems
  • Inject Simulated Faults
  • Interconnected laboratory-scale UPFC FACTS Device
  • Measure actual device interaction

17
FACTS Interaction LaboratoryArchitecture
FACTS/ESS
A/D D/A
10 KVA
Simulation Engine (multiprocessor)
A/D D/A
A/D D/A
FACTS/ESS
FACTS/ESS
Network
18
HIL Laboratory Interface
Machine 1
FACTS1
D/A output
Controllable Load
A/D input
Machine 2
D/A output
FACTS2
Controllable Load
A/D input
Machine 3
FACTS3
Power System Simulation Engine
D/A output
Controllable Load
A/D input
19
FACTS Flexible AC Transmission System Prototype
Device
20
FACTS Interaction Laboratory
UPFC
Simulation Engine
HIL Line
21
Cyber Fault Detection
22
Fault Tolerance
  • Define correct operation of the power system with
    FACTS/ESS
  • Embed as executable constraints into each
    FACTS/ESS computer
  • FACTS/ESS check each other during operation of
    distributed control algorithms

23
Cyber Fault Injection
  • Attempt to confuse the FACTS embedded computers
  • Attempt to disrupt the communication between
    FACTS embedded computers
  • Confuse the power systems operation

24
Error Coverage of Distributed Executable
Correctness Constraints(Maximum Flow Algorithm)
25
System Dynamic Control
26
Power Network Embedded With FACTS Devices
Tie-line flow
CONTROL AREA A
CONTROL AREA B
A decentralized power network embedded with FACTS
devices can be viewed as a hybrid dynamical
system (Differential-algebraic-discrete-event). W
hile the FACTS devices offer improved
controllability, their actions in a
decentralized power network can cause
deleterious interactions among them.
27
Performance of FACTS controllers with ideal
observability
Uncontrollable modes in generator speeds due to
device interactions
28
Project Benchmarks
  • Construction of HIL
  • Demonstration of Cascading Failures
  • Placement and Control
  • Hardware/Software Architecture
  • Cyber Fault Detection
  • Dynamic Control
  • Visualization

29
Special Thanks
  • Imre Gyuk DOE Energy Storage
  • Stan Atcitty Sandia National Lab
  • John Boyes Sandia National Lab
Write a Comment
User Comments (0)
About PowerShow.com