Title: Robust Optimization and Applications
1Robust Optimization andApplications in Machine
Learning
2Part 4 Sparsity in Unsupervised Learning
3Unsupervised learning
4Sparse PCA outline
5Principal Component Analysis
6PCA for visualization
7First principal component
8Sparse PCA outline
9Why sparse factors?
10PCA rank-one case
11sparse PCA rank-one case
12Sparse PCA outline
13SDP relaxation
14SDP relaxation
15Dual problem
16Sparsity and robustness
17Sparse PCA decomposition?
18Sparse PCA outline
19First-order algorithm
20Sparse PCA outline
21PITPROPS data
22PITPROPS data numerical results
23Financial example
24Covariance matrix
25Second factor
26Gene expression data
27Clustering of gene expression data
28Conclusions on sparse PCA
29Part 4 Sparsity in Unsupervised Learning
30Sparse Gaussian networks outline
31Gaussian network problem
32Correlation-based approach
33Approach based on the precision matrix
34Example
35Relevance network vs. graphical model
36Can we check this?
37Sparse inverse covariance and conditional
independence
38Related work
39Maximum-likelihood estimation
40Problems with ordinary MLE
41MLE with cardinality penalty
42Convex relaxation
43Link with robustness
44Properties of estimate
45Algorithms challenges
46First- vs. second-order algorithms
47Black- vs. grey-box first-order algorithms
48Algorithms problem structure
49Nesterovs smooth minimization algorithm
50Nesterovs method
51Putting the problem in Nesterovs format
52Making the problem smooth
53Optimal scheme for smooth minimization
54Application to our problem
55Dual block-coordinate descent
56Properties of dual block-coordinate descent
57Link with LASSO
58Example
59Inverse covariance estimates
60Average error on zeros
61Computing time
62Classification error
63Recovering structure
64Part 4 summary
65References