General Linear Cameras with Finite Aperture - PowerPoint PPT Presentation

About This Presentation
Title:

General Linear Cameras with Finite Aperture

Description:

Leica Apo-Summicron-M. What is this paper? What is this paper? An intuitive reformulation of general linear cameras in terms of eigenvectors ... – PowerPoint PPT presentation

Number of Views:105
Avg rating:3.0/5.0
Slides: 69
Provided by: andrew378
Category:

less

Transcript and Presenter's Notes

Title: General Linear Cameras with Finite Aperture


1
General Linear Cameras with Finite Aperture
  • Andrew Adams and Marc Levoy
  • Stanford University

2
Ray Space
3
Slices of Ray Space
  • Pushbroom
  • Cross Slit
  • General Linear
  • Cameras

Yu and McMillan 04
Román et al. 04
4
Projections of Ray Space
  • Plenoptic Cameras
  • Camera Arrays
  • Regular Cameras

Ng et al. 04
Wilburn et al. 05
Leica Apo-Summicron-M
5
What is this paper?
6
What is this paper?
  • An intuitive reformulation of general linear
    cameras in terms of eigenvectors

7
What is this paper?
  • An intuitive reformulation of general linear
    cameras in terms of eigenvectors
  • An analogous description of focus

8
What is this paper?
  • An intuitive reformulation of general linear
    cameras in terms of eigenvectors
  • An analogous description of focus
  • A theoretical framework for understanding and
    characterizing linear slices and integral
    projections of ray space

9
Slices of Ray Space
  • Perspective View
  • Image(x, y) L(x, y, 0, 0)

10
Slices of Ray Space
  • Orthographic View
  • Image(x, y) L(x, y, x, y)

11
Slices of Ray Space
  • Image(x, y) L(x, y, P(x, y))
  • P determines perspective
  • Lets assume P is linear

12
Slices of Ray Space
P
13
Slices of Ray Space
14
Slices of Ray Space
  • Rays meet when
  • ((1-z)P zI) is low rank
  • Substitute b z/(z-1)
  • ((1-z)P zI) (1-z)(P bI)
  • Rays meet when
  • (P bI) is low rank

15
Slices of Ray Space
  • 0 lt b1 b2 lt 1

16
Slices of Ray Space
  • b1 b2 lt 0

17
Slices of Ray Space
  • b1 b2 1

18
Slices of Ray Space
  • b1 b2 gt 1

19
Slices of Ray Space
  • b1 ! b2

20
Slices of Ray Space
  • b1 ! b2 1

21
Slices of Ray Space
  • b1 b2 ! 1, deficient eigenspace

22
Slices of Ray Space
  • b1 b2 1, deficient eigenspace

23
Slices of Ray Space
  • b1, b2 complex

24
Slices of Ray Space
25
Slices of Ray Space
Real Eigenvalues
Complex Conjugate Eigenvalues
26
Slices of Ray Space
Real Eigenvalues
Equal Eigenvalues
Complex Conjugate Eigenvalues
27
Slices of Ray Space
Real Eigenvalues
Equal Eigenvalues
Equal Eigenvalues, 2D Eigenspace
Complex Conjugate Eigenvalues
28
Slices of Ray Space
One slit at infinity
Real Eigenvalues
Equal Eigenvalues
Equal Eigenvalues, 2D Eigenspace
Complex Conjugate Eigenvalues
29
Projections of Ray Space
30
Projections of Ray Space
31
Projections of Ray Space
32
Projections of Ray Space
  • Rays Integrated at (x, y) (0, 0)

F
33
Projections of Ray Space
  • Rays meet when
  • ((1-z)I zF) is low rank
  • Substitute b (z-1)/z
  • ((1-z)I zF) z(F bI)
  • Rays meet when
  • (F bI) is low rank

34
Projections of Ray Space
  • 0 lt b1 b2 lt 1

35
Projections of Ray Space
  • 0 lt b1 b2 lt 1

36
Projections of Ray Space
  • b1 b2 lt 0

37
Projections of Ray Space
  • b1 b2 lt 0

38
Projections of Ray Space
  • b1 b2 1

39
Projections of Ray Space
  • b1 b2 1

40
Projections of Ray Space
  • b1 b2 gt 1

41
Projections of Ray Space
  • b1 ! b2

42
Projections of Ray Space
  • b1 ! b2

43
Projections of Ray Space
  • b1 ! b2

44
Projections of Ray Space
  • b1 ! b2 1

45
Projections of Ray Space
  • b1 ! b2 1

46
Projections of Ray Space
  • b1 ! b2 1

47
Projections of Ray Space
  • b1 b2 ! 1, deficient eigenspace

48
Projections of Ray Space
  • b1 b2 ! 1, deficient eigenspace

49
Projections of Ray Space
  • b1 b2 1, deficient eigenspace

50
Projections of Ray Space
  • b1 b2 1, deficient eigenspace

51
Projections of Ray Space
  • b1, b2 complex

52
Slices of Ray Space
53
Slices of Ray Space
Real Eigenvalues
Complex Conjugate Eigenvalues
54
Slices of Ray Space
Real Eigenvalues
Equal Eigenvalues
Complex Conjugate Eigenvalues
55
Slices of Ray Space
Real Eigenvalues
Equal Eigenvalues
Equal Eigenvalues, 2D Eigenspace
Complex Conjugate Eigenvalues
56
Slices of Ray Space
One focal slit at infinity
Real Eigenvalues
Equal Eigenvalues
Equal Eigenvalues, 2D Eigenspace
Complex Conjugate Eigenvalues
57
Projections of Ray Space
  • Lets generalize

58
Projections of Ray Space
  • Lets generalize

59
Projections of Ray Space
  • Lets generalize

60
Projections of Ray Space
  • Lets generalize

61
Projections of Ray Space
  • Factor Q as

62
Projections of Ray Space
  • Factor Q as
  • M warps lightfield in (x, y)
  • warps final image

63
Projections of Ray Space
  • Factor Q as
  • M warps lightfield in (x, y)
  • warps final image
  • A warps lightfield in (u, v)
  • shapes domain of integration (bokeh, aperture
    size)

64
Conclusion
65
Conclusion
  • General Linear Cameras can be characterized by
    the eigenvalues of a 2x2 matrix.

66
Conclusion
  • General Linear Cameras can be characterized by
    the eigenvalues of a 2x2 matrix.
  • Focus can be described in the same fashion.

67
Conclusion
  • General Linear Cameras can be characterized by
    the eigenvalues of a 2x2 matrix.
  • Focus can be described in the same fashion.
  • These matrices are a good way to analyze and
    specify linear integral projections of ray space.

68
Questions
Write a Comment
User Comments (0)
About PowerShow.com