Title: General Linear Cameras with Finite Aperture
1General Linear Cameras with Finite Aperture
- Andrew Adams and Marc Levoy
- Stanford University
2Ray Space
3Slices of Ray Space
- Pushbroom
- Cross Slit
- General Linear
- Cameras
Yu and McMillan 04
Román et al. 04
4Projections of Ray Space
- Plenoptic Cameras
- Camera Arrays
- Regular Cameras
Ng et al. 04
Wilburn et al. 05
Leica Apo-Summicron-M
5What is this paper?
6What is this paper?
- An intuitive reformulation of general linear
cameras in terms of eigenvectors
7What is this paper?
- An intuitive reformulation of general linear
cameras in terms of eigenvectors - An analogous description of focus
8What is this paper?
- An intuitive reformulation of general linear
cameras in terms of eigenvectors - An analogous description of focus
- A theoretical framework for understanding and
characterizing linear slices and integral
projections of ray space
9Slices of Ray Space
- Perspective View
- Image(x, y) L(x, y, 0, 0)
10Slices of Ray Space
- Orthographic View
- Image(x, y) L(x, y, x, y)
11Slices of Ray Space
- Image(x, y) L(x, y, P(x, y))
- P determines perspective
- Lets assume P is linear
12Slices of Ray Space
P
13Slices of Ray Space
14Slices of Ray Space
- Rays meet when
- ((1-z)P zI) is low rank
- Substitute b z/(z-1)
- ((1-z)P zI) (1-z)(P bI)
- Rays meet when
- (P bI) is low rank
15Slices of Ray Space
16Slices of Ray Space
17Slices of Ray Space
18Slices of Ray Space
19Slices of Ray Space
20Slices of Ray Space
21Slices of Ray Space
- b1 b2 ! 1, deficient eigenspace
22Slices of Ray Space
- b1 b2 1, deficient eigenspace
23Slices of Ray Space
24Slices of Ray Space
25Slices of Ray Space
Real Eigenvalues
Complex Conjugate Eigenvalues
26Slices of Ray Space
Real Eigenvalues
Equal Eigenvalues
Complex Conjugate Eigenvalues
27Slices of Ray Space
Real Eigenvalues
Equal Eigenvalues
Equal Eigenvalues, 2D Eigenspace
Complex Conjugate Eigenvalues
28Slices of Ray Space
One slit at infinity
Real Eigenvalues
Equal Eigenvalues
Equal Eigenvalues, 2D Eigenspace
Complex Conjugate Eigenvalues
29Projections of Ray Space
30Projections of Ray Space
31Projections of Ray Space
32Projections of Ray Space
- Rays Integrated at (x, y) (0, 0)
F
33Projections of Ray Space
- Rays meet when
- ((1-z)I zF) is low rank
- Substitute b (z-1)/z
- ((1-z)I zF) z(F bI)
- Rays meet when
- (F bI) is low rank
34Projections of Ray Space
35Projections of Ray Space
36Projections of Ray Space
37Projections of Ray Space
38Projections of Ray Space
39Projections of Ray Space
40Projections of Ray Space
41Projections of Ray Space
42Projections of Ray Space
43Projections of Ray Space
44Projections of Ray Space
45Projections of Ray Space
46Projections of Ray Space
47Projections of Ray Space
- b1 b2 ! 1, deficient eigenspace
48Projections of Ray Space
- b1 b2 ! 1, deficient eigenspace
49Projections of Ray Space
- b1 b2 1, deficient eigenspace
50Projections of Ray Space
- b1 b2 1, deficient eigenspace
51Projections of Ray Space
52Slices of Ray Space
53Slices of Ray Space
Real Eigenvalues
Complex Conjugate Eigenvalues
54Slices of Ray Space
Real Eigenvalues
Equal Eigenvalues
Complex Conjugate Eigenvalues
55Slices of Ray Space
Real Eigenvalues
Equal Eigenvalues
Equal Eigenvalues, 2D Eigenspace
Complex Conjugate Eigenvalues
56Slices of Ray Space
One focal slit at infinity
Real Eigenvalues
Equal Eigenvalues
Equal Eigenvalues, 2D Eigenspace
Complex Conjugate Eigenvalues
57Projections of Ray Space
58Projections of Ray Space
59Projections of Ray Space
60Projections of Ray Space
61Projections of Ray Space
62Projections of Ray Space
- Factor Q as
- M warps lightfield in (x, y)
- warps final image
63Projections of Ray Space
- Factor Q as
- M warps lightfield in (x, y)
- warps final image
- A warps lightfield in (u, v)
- shapes domain of integration (bokeh, aperture
size)
64Conclusion
65Conclusion
- General Linear Cameras can be characterized by
the eigenvalues of a 2x2 matrix.
66Conclusion
- General Linear Cameras can be characterized by
the eigenvalues of a 2x2 matrix. - Focus can be described in the same fashion.
67Conclusion
- General Linear Cameras can be characterized by
the eigenvalues of a 2x2 matrix. - Focus can be described in the same fashion.
- These matrices are a good way to analyze and
specify linear integral projections of ray space.
68Questions