ECE 549CS 543: COMPUTER VISON LECTURE 12 - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

ECE 549CS 543: COMPUTER VISON LECTURE 12

Description:

C(P) = Gd(P) D(P) Gs(P) S(P) others.. Image. color. Color terms. Geometric terms ... C(P) = Gd(P) D Gs(P) S. Diffuse component = Line through the origin ... – PowerPoint PPT presentation

Number of Views:79
Avg rating:3.0/5.0
Slides: 25
Provided by: JeanP8
Category:
Tags: computer | ece | lecture | vison | gd | 549cs

less

Transcript and Presenter's Notes

Title: ECE 549CS 543: COMPUTER VISON LECTURE 12


1
ECE 549/CS 543 COMPUTER VISON LECTURE 12 COLOR
II
  • Color Shading Models
  • Color Image Interpretation
  • A First Look at Multi-View Geometry
  • Reading Chapters 6 and 10
  • List of potential projects (will be soon) at
  • http//www-cvr.ai.uiuc.edu/ponce/fall04/project
    s.pdf
  • Homework Photometric stereo (due Tue. Oct. 12)
  • http//www-cvr.ai.uiuc.edu/ponce/fall04/hw2/hw2
    .txt


2
RGB Color Matching Functions
R645.16nm G526.32nm B444.44nm
Negative weights
3
A rather poor reproduction of the RGB
color cube..
4
CIE XYZ Color Matching Functions
Note there are no physical XYZ primaries!
5
Color Matching Functions
  • Problem given a set of primaries, what are the
    weights
  • matching a given spectral radiance?
  • Experiments

1
l
Colour matching functions
L(l) f1(l)P1f2(l)P2f3(l)P3
  • To match S use linearity

S(sL f1(l)S(l)dl)P1(sL f2(l)S(l)dl)P2(sL
f3(l)S(l)dl)P3
6
CIE XYZ and xy spaces
7
Simple Color Models for Images
Geometric terms
C(P) Gd(P) D(P) Gs(P) S(P) others..
Image color
Color terms
8
(No Transcript)
9
Color Interpretation (Klinker and Shafer, 1987)
Metal
Dielectric material
Assume a single dielectric object with uniform
reflectance is observed.
C(P) Gd(P) D Gs(P) S
  • Diffuse component Line through the origin
  • Specular component Second line

Dog-leg pattern
10
The dog-leg pattern
Dichromatic plane
11
B
S
Illuminant color
T
G
Dif
fuse component
R
12
Boundary of
specularity
Dif
fuse
region
B
B
G
G
R
R
13
(Klinker, Shafer, Kanade, IJCV 4, 1990)
14
Acquiring 3D information from multiple images
The INRIA Mobile Robot, 1990.
The Stanford Cart, H. Moravec, 1979.
Courtesy O. Faugeras and H. Moravec.
15
Reconstruction / Triangulation
16
(Binocular) Fusion
17
Epipolar Geometry
  • Epipolar Plane
  • Baseline
  • Epipoles
  • Epipolar Lines

18
Epipolar Constraint
  • Potential matches for p have to lie on the
    corresponding
  • epipolar line l.
  • Potential matches for p have to lie on the
    corresponding
  • epipolar line l.

19
Epipolar Constraint Calibrated Case
Essential Matrix (Longuet-Higgins, 1981)
20
Properties of the Essential Matrix
  • E p is the epipolar line associated with p.
  • E p is the epipolar line associated with p.
  • E e0 and E e0.
  • E is singular.
  • E has two equal non-zero singular values
  • (Huang and Faugeras, 1989).

T
T
21
Epipolar Constraint Small Motions
To First-Order
Pure translation Focus of Expansion
22
Epipolar Constraint Uncalibrated Case
Fundamental Matrix (Faugeras and Luong, 1992)
23
Properties of the Fundamental Matrix
  • F p is the epipolar line associated with p.
  • F p is the epipolar line associated with p.
  • F e0 and F e0.
  • F is singular.

T
T
24
The Eight-Point Algorithm (Longuet-Higgins, 1981)
Write a Comment
User Comments (0)
About PowerShow.com