Title: ECE 549CS 543: COMPUTER VISON LECTURE 12
1ECE 549/CS 543 COMPUTER VISON LECTURE 12 COLOR
II
- Color Shading Models
- Color Image Interpretation
- A First Look at Multi-View Geometry
- Reading Chapters 6 and 10
- List of potential projects (will be soon) at
- http//www-cvr.ai.uiuc.edu/ponce/fall04/project
s.pdf - Homework Photometric stereo (due Tue. Oct. 12)
- http//www-cvr.ai.uiuc.edu/ponce/fall04/hw2/hw2
.txt
2RGB Color Matching Functions
R645.16nm G526.32nm B444.44nm
Negative weights
3A rather poor reproduction of the RGB
color cube..
4CIE XYZ Color Matching Functions
Note there are no physical XYZ primaries!
5Color Matching Functions
- Problem given a set of primaries, what are the
weights - matching a given spectral radiance?
1
l
Colour matching functions
L(l) f1(l)P1f2(l)P2f3(l)P3
S(sL f1(l)S(l)dl)P1(sL f2(l)S(l)dl)P2(sL
f3(l)S(l)dl)P3
6CIE XYZ and xy spaces
7Simple Color Models for Images
Geometric terms
C(P) Gd(P) D(P) Gs(P) S(P) others..
Image color
Color terms
8(No Transcript)
9Color Interpretation (Klinker and Shafer, 1987)
Metal
Dielectric material
Assume a single dielectric object with uniform
reflectance is observed.
C(P) Gd(P) D Gs(P) S
- Diffuse component Line through the origin
- Specular component Second line
Dog-leg pattern
10The dog-leg pattern
Dichromatic plane
11B
S
Illuminant color
T
G
Dif
fuse component
R
12Boundary of
specularity
Dif
fuse
region
B
B
G
G
R
R
13(Klinker, Shafer, Kanade, IJCV 4, 1990)
14Acquiring 3D information from multiple images
The INRIA Mobile Robot, 1990.
The Stanford Cart, H. Moravec, 1979.
Courtesy O. Faugeras and H. Moravec.
15Reconstruction / Triangulation
16(Binocular) Fusion
17Epipolar Geometry
18Epipolar Constraint
- Potential matches for p have to lie on the
corresponding - epipolar line l.
- Potential matches for p have to lie on the
corresponding - epipolar line l.
19Epipolar Constraint Calibrated Case
Essential Matrix (Longuet-Higgins, 1981)
20Properties of the Essential Matrix
- E p is the epipolar line associated with p.
- E p is the epipolar line associated with p.
- E e0 and E e0.
- E is singular.
- E has two equal non-zero singular values
- (Huang and Faugeras, 1989).
T
T
21Epipolar Constraint Small Motions
To First-Order
Pure translation Focus of Expansion
22Epipolar Constraint Uncalibrated Case
Fundamental Matrix (Faugeras and Luong, 1992)
23Properties of the Fundamental Matrix
- F p is the epipolar line associated with p.
- F p is the epipolar line associated with p.
- F e0 and F e0.
- F is singular.
T
T
24The Eight-Point Algorithm (Longuet-Higgins, 1981)