International Joint Conference on Neural Networks IJCNN 2006 - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

International Joint Conference on Neural Networks IJCNN 2006

Description:

International Joint Conference on Neural Networks (IJCNN 2006) An Auto-Associative Neural Network ... Precision-recall curves. University of Quebec in Montreal ... – PowerPoint PPT presentation

Number of Views:122
Avg rating:3.0/5.0
Slides: 18
Provided by: guydesj
Category:

less

Transcript and Presenter's Notes

Title: International Joint Conference on Neural Networks IJCNN 2006


1
International Joint Conference on Neural Networks
(IJCNN 2006)
  • An Auto-Associative Neural Network
  • for Information Retrieval

Guy Desjardins intellagent_at_vif.com Robert
Godin godin.robert_at_uqam.ca Robert
Proulx proulx.robert_at_uqam.ca
2
Agenda
  • Information Retrieval
  • IR NNs
  • Our A-A NN Model
  • Experiment and Results
  • Conclusion - Future

3
Information Retrieval
  • Text representation
  • Indexing documents ? corpus terms

4
Information Retrieval
  • Query Document matching

5
Information Retrieval
  • Similarity(Qi, Dj) cosine (qi, dj)

6
IR NN BAM Bi-directional Associative Memory
7
IR NN MLP Multi-Layer Perceptron
8
IR NN SOM Self-Organized Map
9
Our A-A NN modelAuto-Associative Neural Network
10
Performance issue
  • Number of calculations per document
  • Corpus of 26 000 terms 2,7 ? 109
  • Corpus of 100 000 terms 4,0 ? 1010
  • Dynamic activation of connections
  • For active neurons only 4000
  • Reduced by a factor of 6,7 ? 105
  • Local inactive neurons in a specific document do
    not interact with active ones

11
Hebbian learning rule
Anti-hebbian factor applies one iteration on
two Bégin Proulx 96
12
Experiment
  • Test collection
  • 2 000 documents
  • 7 queries
  • Extracted from TREC FT943
  • Corpus 25 838 index terms
  • Total of 20 relevant documents

13
Results
  • Precision-recall curves

14
Results
  • Rank of relevant documents

15
Results
  • Global metrics

16
Conclusion - Future
  • Benefit
  • Retrieves the leading relevant documents faster
  • Drawback
  • Still converges to fast toward the attractor
    vectors
  • Future
  • Test with larger collection
  • Recursive approach

17
Questions ?
Write a Comment
User Comments (0)
About PowerShow.com