Title: Optical Buffers for HighCapacity Routers
1Optical Buffers
for
High-Capacity
Routers
Rod Tucker ARC Special Research Centre for
Ultra-Broadband Information
Networks (CUBIN) Department of Electrical and
Electronic Engineering University of Melbourne,
Australia
2Optical Buffers
Control
Variable Delay
Dispersion Compensator
Waveguide Delay Line
Amplifier
Delay
Recirculating Loop
Cross Point
Staggered Delay Line
Delay
Cross Point
Cross Point
3Summary
Optical Buffers
Electronic Buffers
- Fiber, Slow Light
- Fundamental limitations
- Delay-Bitrate Product
- Storage Density (Bit Size)
- Power/Energy
- Dispersion
- Waveguide attenuation
International Technology Roadmap for
Semiconductors http//public.itrs.net/
More conservative projections than for Optics
Loss Happens!
- Compare key parameters
- Power dissipation
- Physical size
4100 Tb/s Router Buffer Size
2,500 ports at 40 Gb/s, 250 ms buffering per port
Electronic Router CMOS Buffers
Total buffer capacity 25 Tb 103 RAM chips _at_ 2.5
GB/chip
Optical Router Fibre Delay Line Buffers
.
Sun
Earth
5Packet Switching with Reduced Buffering
Enachescu et al., ACM/SIGCOMM July 2005
Buffer size can be reduced
Optical Router Fibre Delay Line Buffers
Total fibre length 500 Mm (200
km/port) Distance from Earth to the Moon
1 ms buffering per port (100 Gb total)
Buffering with fiber delay lines is challenging
6Slow-Light to the Rescue?
Photonic Crystal
Electromagnetically-Induced Transparency in
Semiconductor
Group Velocity
Attenuation
Hilbert Transform
Effective Refractive Index n
Refractive Index n
Optical frequency
C.J Chang-Hasnain et al., Proc IEEE, 9, 2003
Y. Xu et al., QELS, 2000
7Car Analogy
20
100 km/h Speed Limit
20 km/h Speed Limit
Real World
Reduced Group Velocity Constant Bitrate
Slow Light World
Lbit
8Some Numbers
100-Tb/s Optical Router 1 ms buffering per port
(100 Gb total)
Fiber 200 km/port, 0.5 Gm total Storage Density
1 bit / 5 mm
Ideal Slow Light
Waveguide 40 m/port, 100 km total Storage
Density 1 bit / mm
Slow Light Waveguide Slow-down factor 5x102
400 m/port, 1 Mm
total Storage Density 1 bit /
10 mm
.
Wavelength
9Size Matters
Ideal Slow Light Waveguide
CMOS (2018)
Non-Ideal Slow Light Waveguide
5l
l
100l
1 bit
Minimum bit area 5l2 (l 1 mm)
Minimum bit area 500l2 (l 1 mm)
Storage Density
150 Gbit/m2
per wavelength
1.5 Gbit/m2
70 m2
1,700 m2
10Size required to store 200 IP packets
Slow Light Waveguide (200 m)
CMOS
5l
100l
1 bit
4 cm
0.02 mm2
Fiber (10 km)
10 cm
4 cm
10 cm
5 cm
11Loss
Fibre 0.2 dB/km
In
Out
15 km for 3-dB loss
Photonic Crystal WG 0.1 dB/cm
Out
In
6 mm for 3-dB loss
200 m (200 packets) 33,000 dB
20 m (20 packets) 3,000 dB
12Putting it All Together Delay Line Buffer
Stage 1
Stage m
Power
Power
Signal
Signal
?
?
g
g
b
b
Psat
L
Noise
Two key limitations
Slow light waveguide
- Amplifier Saturation Power
Dispersion compensation
Waveguide loss compensation
13Energy per Bit in Slow Light Buffers
100 M
Contention Resolution
1 M
Packet Synchronization
0.05 dB/cm
10 k
Slow Light
10-11
Capacity, (b)
100
10-12
0.5 dB/cm
10-13
Energy per bit (J)
1
CMOS eDRAM
10-14
All delay line buffers
10-15
10-16
10 mW
100 mW
100 mW
1 mW
10 mW
1 mW
Saturation power, Psat
International Technology Roadmap for
Semiconductors
Projections for 2018
14Optical and Electronic Buffers
Optical Buffer
Optical Cross Connect
Optical Inputs
CMOS Buffer
O/E
E/O
5 mW
10-4
7 mW
7 mW
10-2
Buffer
O/E E/O
20 mW
10-2
CMOS
10-2
20 mW
20 mW
2x10-2
10-2
20 mW
Total
Viable buffer solutions
15Conclusions
- Slow light and fiber delay lines struggle to
compete with CMOS
- Power dissipation and dispersion are key issues
- Research challenges for optical buffering
- Waveguide losses ltlt 0.1 dB/cm
- Integration of gain and dispersion compensation
- Crosspoint power dissipation and footprint
16Dispersion Limits in Slow Light Buffers
Maximum (Slow-down factor 1) and fiber
40 Gb/s
10 mm
PC
EIT
1 mm
0.5 dB/cm
0.05 dB/cm
Stored bit length, Lbit
100 mm
CRW
Psat 100 mW
10 mm
1 mm
Minimum (Ideal)
1
10
10 k
0.1
100
1 k
100 k
Number of stored bits, Nbit (b)