Title: Quantum mechanical wonders
1Niels Bohr Institute Copenhagen University
Light-Matter Quantum Interface
Eugene Polzik LECTURE 4
IHP Quantum Information Trimester
2Quantum memory for light criteria
- Memory must be able to store independently
prepared - states of light
- The state of light must be mapped onto the
memory with - the fidelity higher than the fidelity of the
best - classical recording
- The memory must be readable
B. Julsgaard, J. Sherson, J. Fiuráek , I. Cirac,
and E. S. Polzik Nature, 432, 482 (2004)
quant-ph/0410072.
3Mapping a Quantum State of Light onto Atomic
Ensemble
The beginning. Complete absorption
Squeezed Light pulse
Proposal Kuzmich, Mølmer, EP PRL 79, 4782
(1997)
Atoms
4Our light-atoms interface - the basics
Light pulse consisting of two modes
5Polarization quantum variables Light
Propagation direction
vertical
horizontal
6Canonical quantum variables for an atomic
ensemble
7Object gas of spin polarized atoms at room
temperature
Optical pumping with circular polarized light
8- Canonical quantum variables for light
- Complementarity amplitude and phase of
- light cannot be measured together
9Polarization homodyning - measure X (or P)
Polarizing Beamsplitter 450/-450
Strong field A(t)
x
Quantum field a -gt X,P
Polarizing cube
S1
10Teleportation in the X,P representation
11Today another idea for (remote) state
transfer and its experimental implementation for
quantum memory for light
See also work on quantum cloning J. Fiurasek, N.
Cerf, and E.S. Polzik, Phys.Rev.Lett. 93,
180501 (2004)
12Implementation light-to-matter state transfer
No prior entanglement necessary
C
F80
F?100
B. Julsgaard, J. Sherson, J. Fiuráek , I. Cirac,
and E. S. Polzik Nature, 432, 482 (2004)
quant-ph/0410072.
13These criteria should be met for memory in
14Classical benchmark fidelity for transfer of
coherent states
Atoms
Best classical fidelity 50
K. Hammerer, M.M. Wolf, E.S. Polzik, J.I. Cirac,
Phys. Rev. Lett. 94,150503 (2005),
15Preparation of the input state of light
Strong field A(t)
Quantum field - X,P
x
Polarizing cube
S1
P
Polarization state
X
16Physics behind the Hamiltonian 1. Polarization
rotation of light
Polarizing Beamsplitter 450/-450
x
Quantum field
Polarizing cube
17Physics behind the Hamiltonian 2. Dynamic Stark
shift of atoms
Atoms
atoms
Strong field A(t)
Quantum field - a
x
Polarizing cube
y
18Quantum memory Step 1 - interaction
Light rotates atomic spin Stark shift
XL
Atomic spin rotates polarization of light
Faraday effect
Output light
Input light
Entanglement
19Quantum memory Step 2 - measurement feedback
Polarization measurement
Fidelity gt 100 (82 without SS atoms)
20Experimental realization of quantum memory for
light
21Memory in rotating spin states
y
z
Atomic Quantum Noise
2,4
2,2
2,0
1,8
1,6
1,4
1,2
Atomic noise power arb. units
1,0
0,8
0,6
0,4
0,2
0,0
0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
Atomic density arb. units
22Memory in rotating spin states - continued
x
z
y
Atomic Quantum Noise
2,4
2,2
2,0
1,8
1,6
1,4
1,2
Atomic noise power arb. units
1,0
0,8
0,6
0,4
0,2
0,0
0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
Atomic density arb. units
23Encoding the quantum states in frequency sidebands
24Memory in atomic Zeeman coherences
Cesium
4
3
2
25x
z
y
26Nature, Nov. 25 (2004) quant-ph/0410072.
27Stored state versus Input state mean amplitudes
X plane
read
write
t
output
input
Y plane
Magnetic feedback
28Stored state variances
29Fidelity of quantum storage
- State overlap averaged over
- the set of input states
30Quantum memory lifetime
31Decoherence Limitations
Typical estimate of linewidth
GHz 5 0.1qdeg 1.0PmW
0.5PmWqdeg
Working values
Important for entanglement
Need k2 large and h low, impossible.
32Deterministic quantum memory for a light Qubit
Initial state of atoms
squeezed
Realized by an extra QND measurement pulse
A. Sørensen, NBI
33Quantum Memory for Light demonstrated
- Deterministic Atomic Quantum Memory proposed and
- demonstrated for coherent states with ltngt in
- the range 0 to 10 lifetime4msec
- Fidelity up to 70, markedly higher than best
- classical mapping
34Scalability an array of dipole traps or solid
state implementation quantum holograms
Detector array
Spatial array of memory cells
I. Sokolov and EP, to be submitted
35Y
l/4 wave plate
Recent advanced proposals K. Hammerer, K.
Mølmer, EP, J.I. Cirac. Phys.Rev. A., 70, 044304
(2004). J. Sherson, K. Mølmer, A.Sørensen, J.
Fiurasek, and EP quant-ph/0505170
Light pulse
36Quantum memory read-out single pulse in squeezed
state
37Light-Atoms Q-interface with cold atoms
6P
Cesium clock levels
F4
F3
D. Oblak C. Alzar, P. Petrov
38- Memory Summary
- New state transfer protocol ? quantum memory for
light - Experimental demonstration for coherent states
- Nature, 432, 482 (2004)
- Prediction for a qubit state bridging dicrete
and - continuous variables
- State retrieval protocols
39Criteria for light-ensemble interface
- 2-level stable state with long coherence time
- Initialization collective coherent spin state
(CSS) - Coupling of the CSS to light corresponding to
- high optical density
40Atomic teleportation
3-party entanglement/ Secret sharing
Scaling/ solid state implementation
Entangled atoms Entangled light Light/atoms QI
exchange
Quantum memory for light
Distillation by local operations
Continuous variable logic
Discrete variable logic
41cavity enhanced interaction
- enhanced phase shift
- power build-up inside cavity
- compensate with smaller photon number
T mirror transmission a absorption
42Coupling strength of the interface
Z
Duan, Cirac, Zoller, EP PRL (2000)
43Figure of merit for the quantum interface
44Spontaneous emission the fundamental limit
K. Hamerrer, K. Mølmer, E. S. Polzik, J. I.
Cirac. PRA 2004, quant-ph/0312156