Quantum mechanical wonders - PowerPoint PPT Presentation

1 / 44
About This Presentation
Title:

Quantum mechanical wonders

Description:

Quantum mechanical wonders – PowerPoint PPT presentation

Number of Views:86
Avg rating:3.0/5.0
Slides: 45
Provided by: eugene80
Category:

less

Transcript and Presenter's Notes

Title: Quantum mechanical wonders


1
Niels Bohr Institute Copenhagen University
Light-Matter Quantum Interface
Eugene Polzik LECTURE 4
IHP Quantum Information Trimester
2
Quantum memory for light criteria
  • Memory must be able to store independently
    prepared
  • states of light
  • The state of light must be mapped onto the
    memory with
  • the fidelity higher than the fidelity of the
    best
  • classical recording
  • The memory must be readable

B. Julsgaard, J. Sherson, J. Fiuráek , I. Cirac,
and E. S. Polzik Nature, 432, 482 (2004)
quant-ph/0410072.
3
Mapping a Quantum State of Light onto Atomic
Ensemble
The beginning. Complete absorption
Squeezed Light pulse
Proposal Kuzmich, Mølmer, EP PRL 79, 4782
(1997)
Atoms
4
Our light-atoms interface - the basics
Light pulse consisting of two modes
5
Polarization quantum variables Light
Propagation direction
vertical
horizontal
6
Canonical quantum variables for an atomic
ensemble
7
Object gas of spin polarized atoms at room
temperature
Optical pumping with circular polarized light
8
  • Canonical quantum variables for light
  • Complementarity amplitude and phase of
  • light cannot be measured together

9
Polarization homodyning - measure X (or P)
Polarizing Beamsplitter 450/-450
Strong field A(t)
x
Quantum field a -gt X,P
Polarizing cube
S1
10
Teleportation in the X,P representation
11
Today another idea for (remote) state
transfer and its experimental implementation for
quantum memory for light
See also work on quantum cloning J. Fiurasek, N.
Cerf, and E.S. Polzik, Phys.Rev.Lett. 93,
180501 (2004)
12
Implementation light-to-matter state transfer
No prior entanglement necessary
C
F80
F?100
B. Julsgaard, J. Sherson, J. Fiuráek , I. Cirac,
and E. S. Polzik Nature, 432, 482 (2004)
quant-ph/0410072.
13
These criteria should be met for memory in
14
Classical benchmark fidelity for transfer of
coherent states
Atoms
Best classical fidelity 50
K. Hammerer, M.M. Wolf, E.S. Polzik, J.I. Cirac,
Phys. Rev. Lett. 94,150503 (2005),
15
Preparation of the input state of light
Strong field A(t)
Quantum field - X,P
x
Polarizing cube
S1
P
Polarization state
X
16
Physics behind the Hamiltonian 1. Polarization
rotation of light
Polarizing Beamsplitter 450/-450
x
Quantum field
Polarizing cube
17
Physics behind the Hamiltonian 2. Dynamic Stark
shift of atoms
Atoms
atoms
Strong field A(t)
Quantum field - a
x
Polarizing cube
y
18
Quantum memory Step 1 - interaction
Light rotates atomic spin Stark shift
XL
Atomic spin rotates polarization of light
Faraday effect
Output light
Input light
Entanglement
19
Quantum memory Step 2 - measurement feedback
Polarization measurement
Fidelity gt 100 (82 without SS atoms)
20
Experimental realization of quantum memory for
light
21
Memory in rotating spin states
y
z
Atomic Quantum Noise
2,4
2,2
2,0
1,8
1,6
1,4
1,2
Atomic noise power arb. units
1,0
0,8
0,6
0,4
0,2
0,0
0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
Atomic density arb. units
22
Memory in rotating spin states - continued
x
z
y
Atomic Quantum Noise
2,4
2,2
2,0
1,8
1,6
1,4
1,2
Atomic noise power arb. units
1,0
0,8
0,6
0,4
0,2
0,0
0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
Atomic density arb. units
23
Encoding the quantum states in frequency sidebands
24
Memory in atomic Zeeman coherences
Cesium
4
3
2
25
x
z
y
26
Nature, Nov. 25 (2004) quant-ph/0410072.
27
Stored state versus Input state mean amplitudes
X plane
read
write
t
output
input
Y plane
Magnetic feedback
28
Stored state variances
29
Fidelity of quantum storage
  • State overlap averaged over
  • the set of input states

30
Quantum memory lifetime
31
Decoherence Limitations
Typical estimate of linewidth
GHz 5 0.1qdeg 1.0PmW
0.5PmWqdeg
Working values
Important for entanglement
Need k2 large and h low, impossible.
32
Deterministic quantum memory for a light Qubit
Initial state of atoms
squeezed
Realized by an extra QND measurement pulse
A. Sørensen, NBI
33
Quantum Memory for Light demonstrated
  • Deterministic Atomic Quantum Memory proposed and
  • demonstrated for coherent states with ltngt in
  • the range 0 to 10 lifetime4msec
  • Fidelity up to 70, markedly higher than best
  • classical mapping

34
Scalability an array of dipole traps or solid
state implementation quantum holograms
Detector array
Spatial array of memory cells
I. Sokolov and EP, to be submitted
35
Y
l/4 wave plate
Recent advanced proposals K. Hammerer, K.
Mølmer, EP, J.I. Cirac. Phys.Rev. A., 70, 044304
(2004). J. Sherson, K. Mølmer, A.Sørensen, J.
Fiurasek, and EP quant-ph/0505170
Light pulse
36
Quantum memory read-out single pulse in squeezed
state
37
Light-Atoms Q-interface with cold atoms
6P
Cesium clock levels
F4
F3
D. Oblak C. Alzar, P. Petrov
38
  • Memory Summary
  • New state transfer protocol ? quantum memory for
    light
  • Experimental demonstration for coherent states
  • Nature, 432, 482 (2004)
  • Prediction for a qubit state bridging dicrete
    and
  • continuous variables
  • State retrieval protocols

39
Criteria for light-ensemble interface
  • 2-level stable state with long coherence time
  • Initialization collective coherent spin state
    (CSS)
  • Coupling of the CSS to light corresponding to
  • high optical density

40
Atomic teleportation
3-party entanglement/ Secret sharing
Scaling/ solid state implementation
Entangled atoms Entangled light Light/atoms QI
exchange
Quantum memory for light
Distillation by local operations
Continuous variable logic
Discrete variable logic
41
cavity enhanced interaction
  • enhanced phase shift
  • power build-up inside cavity
  • compensate with smaller photon number

T mirror transmission a absorption
42
Coupling strength of the interface
Z
Duan, Cirac, Zoller, EP PRL (2000)
43
Figure of merit for the quantum interface
44
Spontaneous emission the fundamental limit
K. Hamerrer, K. Mølmer, E. S. Polzik, J. I.
Cirac. PRA 2004, quant-ph/0312156
Write a Comment
User Comments (0)
About PowerShow.com