Title: Deterministic Planning 2
11.040/1.401Project ManagementSpring
2007Lecture 9Deterministic Planning Part II
Dr. SangHyun Lee
lsh_at_mit.edu
Department of Civil and Environmental
Engineering Massachusetts Institute of Technology
2Project Management Phase
DESIGN PLANNING
DEVELOPMENT
OPERATIONS
CLOSEOUT
FEASIBILITY
Fin.Eval.
Organization
Risk
Estimating
Planning Scheduling
3Outline
- Network Techniques
- CPM
- PDM
- Linear Scheduling Method
4Precedence Diagram Method (PDM)
A (10)
Gantt chart
B (10)
Activity B will start right after Activity A
finishes
A 10
B 10
CPM (AON)
A (10)
Activity B will start right after Activity A
starts
B (10)
5Precedence Diagram Method (PDM)
- PDM Extends CPM to include
- Multiple relationships beyond Finish-to-Start
- Finish-to-Finish
- Start-to-Start
- Start-to-Finish
6PDM Types of Relationships
A
B
- FS Finish-to-start
- SS Start-to-start
- FF Finish-to-finish
- SF Start-to-finish
A
B
A
B
A
B
7Precedence Diagram Method (PDM)
A (10)
Gantt chart
B (10)
Activity B will start after Activity A finishes
A 10
B 10
CPM (AON)
A (10)
Activity B will start 5 days later after Activity
A finishes
(5)
B (10)
A 10
A 5
B 10
8Precedence Diagram Method (PDM)
- PDM Extends CPM to include
- Lag () Lead (-)
A (10)
FS (5)
B (10)
A (10)
FS (-5)
B (10)
9PDM Relationships w/ Lag Lead
Lay-Out Excavate
- Finish-to-Start Lead
- Finish-to-Start Lag
- Start-to-Start Lead
- Start-to-Start Lag
Install Fuel Tanks
FS -1
Pour 4th-Floor Slab
Remove 4th Floor Shoring
FS 14
SS -1
Backfill Pipe
Install Pipe
Install Fuel Tanks
Install Exterior Conduits
SS 1
Adapted from Callahan et al., 1992
10PDM Relationships w/ Lag Lead
- Finish-to-Finish Lead
- Finish-to-Finish Lag
- Start-to-Finish Lead
- Start-to-Finish Lag
Adapted from Callahan et al., 1992
11Slack or Float in PDM
- Total Float (TF)
- TF(k) LF(k) - ES(k) - Dk
- Start Float (SF)
- SF(k) LS(k) - ES(k)
- Finish Float (FNF)
- FNF(k) LF(k) - EF(k)
12PDM Example
10
30
1
C GC
A GC
2
3
3
40
80
100
90
D EL
H ME
K ME
FINISH
2
6
0
2
1
1
ES
EF
START
LS
LF
TF
D
SF
FNF
20
50
B GC
E ME
4
4
60
70
2
F GC
G EL
6
3
Source Callahan et al., 1992
13Forward Pass
30s ES 10s EF Lag (FS)
10
30
1
0
3
4
6
C GC
A GC
2
3
3
40
80
100
90
D EL
H ME
K ME
FINISH
2
6
0
2
1
1
0
0
START
LS
LF
TF
D
SF
FNF
20
50
0
4
B GC
E ME
4
4
60
70
2
F GC
G EL
6
3
Source Callahan et al., 1992
14Forward Pass
10
30
1
0
3
4
6
C GC
A GC
100s ES 90S EF 100s ES 70s EF
MAX
2
3
3
40
80
100
90
17
17
7
9
9
15
15
17
D EL
H ME
K ME
FINISH
2
6
0
2
1
1
0
0
START
LS
LF
TF
D
SF
FNF
20
50
0
4
4
8
B GC
E ME
4
4
60
70
2
6
12
12
15
F GC
G EL
6
3
Source Callahan et al., 1992
15Backward Pass
10
30
1
0
3
4
6
C GC
A GC
2
3
3
40
80
100
90
17
17
7
9
9
15
15
17
D EL
H ME
K ME
FINISH
9
17
17
15
17
15
2
6
0
2
1
1
0
0
START
TF
D
SF
FNF
20
50
0
4
4
8
B GC
E ME
4
4
60
70
2
6
12
12
15
F GC
G EL
14
17
70s LF 100S LS 70s LS 80s LF - 1
6
3
MIN
Source Callahan et al., 1992
16Backward Pass
10
30
1
0
3
4
6
C GC
A GC
4
0
6
3
2
3
3
40
80
100
90
17
17
7
9
9
15
15
17
D EL
H ME
K ME
FINISH
9
7
17
17
9
15
17
15
2
6
0
2
1
1
0
0
START
0
0
TF
D
SF
FNF
20
50
0
4
4
8
B GC
E ME
9
5
1
5
4
4
1s LF 10S LS 1s LF 20s LS
60
70
MIN
2
6
12
12
15
F GC
G EL
14
17
8
14
6
3
Source Callahan et al., 1992
17Total Slack or Float
10
30
1
0
3
4
6
C GC
A GC
4
0
6
3
TS or TF LF - ES - D
2
0
0
3
3
40
80
100
90
17
17
7
9
9
15
15
17
D EL
H ME
K ME
FINISH
9
7
17
17
9
15
17
15
2
6
0
2
0
0
0
0
1
1
0
0
START
0
0
0
D
SF
FNF
20
50
0
4
4
8
B GC
E ME
9
5
1
5
4
4
1
1
60
70
2
6
12
12
15
F GC
G EL
14
17
8
14
6
3
2
2
Source Callahan et al., 1992
18Critical Path
10
30
1
0
3
4
6
C GC
A GC
4
0
6
3
2
0
0
3
3
40
80
100
90
17
17
7
9
9
15
15
17
D EL
H ME
K ME
FINISH
9
7
17
17
9
15
17
15
2
6
0
2
0
0
0
0
1
1
0
0
START
0
0
0
D
SF
FNF
20
50
0
4
4
8
B GC
E ME
9
5
1
5
4
4
1
1
60
70
2
6
12
12
15
F GC
G EL
14
17
8
14
6
3
2
2
Source Callahan et al., 1992
19Start Finish Slack or Float
10
30
1
0
3
4
6
C GC
A GC
4
0
6
3
2
0
0
3
0
0
0
0
3
40
80
100
90
17
17
7
9
9
15
15
17
D EL
H ME
K ME
FINISH
9
7
17
17
9
15
17
15
2
6
0
2
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
START
0
0
0
D
0
0
20
50
0
4
4
8
B GC
E ME
9
5
1
5
4
4
1
1
1
1
1
1
60
70
2
6
12
12
15
F GC
G EL
14
17
8
14
6
3
2
2
2
2
2
2
Source Callahan et al., 1992
20PDM Caveat Vanishing Critical Path
- Tracing critical path can be difficult
- Finish-finish constraints with leads can lead to
vanishing critical path
FF -5
Total float
Duration
21PDM Caveat - Counter-Intuitive
- Tracing critical path can be difficult
- Can be counter-intuitive
- The longer A20 is, the smaller the critical path
duration and quicker can complete!
A30
FF 2
A20
SS 0
A10
22Slack or Float Ownership
- Tension between owner and contractor
- Significant legal implications
- Problem
- Owners seek to push contractors on tight schedule
- Too many late starts risk overall project
duration - Contractors seek flexibility
- Flexibility has value
23Outline
- Network Techniques
- CPM
- PDM
- Linear Scheduling Method
24Linear Scheduling Method (LOM)
- Line-of-Balance
- Time Location
- Repetitive Linear Activities
- Rate of Progress (production rate)
25LSM Diagram
Source Callahan et al., 1992
26Plotting Activity Progress Lines
Source Callahan et al., 1992
27Use of Restraint on LSM Diagram
Source Callahan et al., 1992
28Activity Interference
Source Callahan et al., 1992
29Use of Activity Buffers in LSM Schedules
Source Callahan et al., 1992
30LSM Example
LinearPlus
31LSM Example
Tilos