Welcome to Fundamentals of Computer Graphics I CG I INF 3161

1 / 39
About This Presentation
Title:

Welcome to Fundamentals of Computer Graphics I CG I INF 3161

Description:

Towards the end of lecture (before Christmas) Technical part: implement additional techniques ... (2) Movie Theater Revenue (Germany, in Mio. Euro) 605. 672. 750 ... –

Number of Views:91
Avg rating:3.0/5.0
Slides: 40
Provided by: marcus45
Category:

less

Transcript and Presenter's Notes

Title: Welcome to Fundamentals of Computer Graphics I CG I INF 3161


1
Welcome toFundamentals of Computer Graphics
I(CG I)- INF 3161 -
  • Marcus Magnor

2
Courses in CG
  • Fundamentals of CG I
  • INF 3161
  • In the winter
  • Bachelor, 5. semester
  • Fundamentals of CG II
  • INF 3162
  • In the summer
  • Bachelor, 6. semester
  • Physics-based Modeling and Simulation
  • INF5161
  • In the winter
  • Master, 7. semester
  • Image-based Modeling and Rendering
  • INF 4162
  • In the summer
  • Master, 8. semester
  • seminar, lab courses (BA, MA), project course,
    BA thesis, MA thesis

3
Overview
  • Today
  • Administrative stuff
  • Overview of computer graphics
  • Fundamentals of image formation
  • Next time
  • Ray tracing fundamentals

4
General Information
  • Lecture
  • 31
  • Tue, Th 11.30-13.00 h
  • Room M160
  • Assignments
  • Weekly
  • Th Wed next week
  • practical assignments
  • Program your own ray tracer
  • Web page
  • http//graphics.tu-bs.de/teaching.html
  • Lecture slides (PDF), assignments, other
    information

5
People
  • Lecturer
  • Prof. Marcus Magnor
  • Room G29
  • E-mail magnor_at_cg.tu-bs.de
  • Assistant
  • Anita Sellent
  • Room G27
  • E-mail sellent_at_cg.tu-bs.de
  • Secretary
  • Anja Franzmeier
  • Room G28
  • Tel. 391-2102

6
Weekly Assignments
  • Weekly assignments
  • Th to next Wed
  • Programming assignments
  • Present your solution by following Wednesday
  • Exercises
  • Wednesdays 1130-100
  • Room G40 (CIP pool)
  • Show your solutions
  • Login to CIP pool needed
  • QA
  • Correct program code provided on web page
  • Mandatory for
  • Bachelor and Master
  • Highly recommended for Diplom

7
Programming Assignments
  • On computers in student pool
  • Apple
  • Standard ANSI C/C
  • Create compile-alone source code
  • Standard libraries, library paths
  • Provide Makefile
  • Must compile and run on any Linux box
  • Basis for ray tracing competition

8
Ray Tracing Competition
  • Towards the end of lecture (before Christmas)
  • Technical part implement additional techniques
  • Points for each implemented technique
  • Bump mapping
  • Shadow mapping
  • Motion blur
  • Artistic part create your own ray-traced work of
    art
  • Picture must reflect all additionally implemented
    techniques
  • Awards for best pictures
  • Virtual exhibition on our web pages

9
To be admitted to the exam
  • Programming assignments
  • Minimum of 30 per assignment sheet
  • Average of gt50 of all assignments
  • Ray Tracing competition
  • Submit a picture created with your enhanced ray
    tracer
  • Create accompanying web page explaining your
    techniques etc.
  • Implement minimum number of technical points
  • Exam
  • Written or oral
  • Depending on students
  • If written December 21, 2006

10
Literature
  • Frank Nielsen, "Visual Computing", Charles River
    Media, 2005, EUR 55,90
  • Peter Shirley, "Realistic Ray-Tracing", AK
    Peters, 2003, EUR 40,00
  • Alan Watt, Mark Watt, "Advanced Animation and
    Rendering Techniques, Addison-Wesley, 1992, EUR
    55,50
  • Peter Shirley et al., "Fundamentals of Computer
    Graphics", AK Peters, 2005, EUR 81,50
  • James Foley, Andries Van Dam, et al., "Computer
    Graphics Principles and Practice", 2. Edition,
    Addison-Wesley, 1995, EUR 81,50

11
Course Syllabus
  • Fundamentals
  • light transport
  • Ray Tracing
  • Basics
  • Transformations and projections
  • Acceleration strategies
  • Signal processing, antialiasing
  • Advanced Topics
  • Human visual system
  • Perception
  • Global illumination

12
What is Computer Graphics ?
Engineering
Psychology
Photography
CAD/CAM/CAE
Rendering
Perception
Graphics
Simulation
Inverse Rendering
Geometric Modeling
Physics
Vision
Mathematics
13
Image Perception - Image Formation
Scene Geometry Motion Surface Reflectance Scene
Illumination Camera
Models
Physics
Image
14
Historical Perspective
  • A short history of graphics
  • 1950 MIT Whirlwind (CRT)
  • 1955 Sage, Radar with CRT and light pen
  • 1958 Willy Higinbotham Tennis
  • 1960 MIT Spacewar on DEC PDP-1
  • 1963 Ivan Sutherlands Sketchpad (CAD)
  • 1969 ACM Siggraph founded
  • 1968 Tektronix storage tube (5-10.000)
  • 1968 EvansSutherland (flight simulators)
    founded
  • 1968 Douglas Engelbart computer mouse
  • 1970 Xerox GUI
  • 1971 Gourand shading
  • 1974 Z-buffer
  • 1975 Phong model
  • 1979 Eurographics founded
  • 1980 Whitted Ray tracing

15
Historical Perspective
  • A short history of graphics (Cont.)
  • 1981 Apollo Workstation, IBM PC
  • 1982 Silicon Graphics (SGI) founded
  • 1984 X Window System
  • 1984 First Silicon Graphics Workstations (IRIS
    GL)
  • Until mid/end of 1990s Dominance of SGI in the
    high end
  • HW RealityEngine, InfiniteReality,
    RealityMonster, ...
  • SW OpenGL, OpenInventor, Performer, Digital
    Media Libs, ...
  • End of 1990sLow- to mid range taken over by
    PCs (Nvidia, ATI, ...)
  • HW Fast development cycles, Graphics-on-a-chip,
    ...
  • SW Direct 3D OpenGL, computer games
  • Today
  • Programmable graphics hardware, Cg

16
Visual Entertainment
 
(1) Quelle SPIO, Spitzenorganisation der
Filmwirtschaft, Wiesbaden (2) Quelle FFA,
Filmförderanstalt, Berlin (3) Quelle
Titelprüfung der USK für Computerspiele (aller
Systeme), entspricht rd. 95 aller auf dem dt.
Markt publizierten Produktionen (4) Quelle Gfk,
Gesellschaft für Konsumforschung zitiert nach
VUD, Verband Unterhaltssoftware Dtld. e.V.
17
Siggraph Publications 2001-2005
18
Computer Graphics Industry
  • Graphics hardware
  • NVidia (USA)
  • ATI (Canada)
  • Software research
  • Microsoft (USA, UK, China)
  • Animation software
  • Alias (Canada)
  • Avid/SoftImage (USA/Canada)
  • Autodesk (USA)
  • Interactive entertainment
  • Electronic Arts (USA)
  • HEADQUARTERS Redwood City, California
  • REVENUES 3.1 billion for fiscal 2005
  • EMPLOYEES 6,100 worldwide  
  • Sony, Nintendo, Sega (Japan)
  • Ubi Soft (France)
  • F/X
  • Industrial Light Magic (USA)
  • Digital Domain (USA)
  • Pixar (USA)

19
Industrial CG Jobs in Germany
  • CAD, VR
  • Airbus (Hamburg)
  • Automotive industry
  • Small- mid-cap companies
  • Animation
  • http//www.rendering.de/nano.cms/Lightwave/Jobange
    bote
  • Game development
  • Bundesverband der interaktiven Unterhaltungssoftwa
    re
  • http//www.game-verband.de/
  • Ubi Soft (Düsseldorf)
  • Radon Labs, Zeroscale, SEK (Berlin)
  • Crytek (Coburg)
  • CG Research
  • Mental Images, Mercury (Berlin)
  • Alias, Scanline (Munich)

20
Summary
  • Computer Graphics
  • Rendering, modeling, visualization, animation,
    imaging,
  • Young, dynamic area
  • Progress driven by research technology
  • Big industry
  • gtgt interactive entertainment, special effects
  • Interdisciplinary field
  • Mathematics, physics, engineering, psychology,
    art, entertainment,

21
Fundamentals ofComputer Graphics I- Image
Formation -
  • Marcus Magnor

22
Motivation
23
Image Formation
Sensor
24
Perception of Light
The eye detects radiance
25
Radiance in Space
Flux leaving surface 1 must be equal to flux
arriving on surface 2
The radiance in the direction of a light ray
remains constant as it propagates along the ray
26
Brightness Perception
r
f
l
  • dA gt dA photon flux per rod stays constant
  • dA lt dA photon flux per rod decreases
  • Where does the Sun turn into a star ?
  • Depends on apparent Sun disc size on retina
  • Photon flux per rod stays the same on Mercury,
    Earth or Neptune
  • Photon flux per rod decreases when d? lt 1 arc
    minute (beyond Neptune)

27
Light Object Interaction
Light/Object interaction
28
Reflectance
  • Reflectance may vary with
  • Illumination angle
  • Viewing angle
  • Wavelength
  • (Polarization)
  • Variations due to
  • Absorption
  • Surface micro-geometry
  • Index of refraction / dielectric constant
  • Scattering

Aluminium ?2.0µm
Aluminium ?0.5µm
Magnesium ?0.5µm
29
Surface Radiance
  • Visible surface radiance
  • Surface position
  • Outgoing direction
  • Incoming illumination direction
  • Self-emission
  • Reflected light
  • Incoming radiance from all directions
  • Direction-dependent reflectance

30
Bidirectional Reflectance Distribution Function
  • BRDF describes surface reflection for light
    incident from direction (??,f?) observed from
    direction (?i,fi)
  • Bidirectional
  • depends on two directions (4-D function)
  • Distribution function
  • Unit 1/sr

31
BRDF Properties
  • Helmholtz reciprocity principle
  • BRDF remains unchanged if incident and reflected
    directions are interchanged
  • Smooth surface isotropic BRDF
  • reflectivity independent of rotation around
    surface normal
  • BRDF has only 3 instead of 4 degrees of freedom

32
BRDF Properties
  • Characteristics
  • BRDF units sr--1
  • not intuitive
  • Range of values
  • from 0 (absorption) to
  • ? (reflection, d -function)
  • Energy conservation law
  • No self-emission
  • Possible absorption
  • Reflection only at the point of entry (xi xo)
  • No subsurface scattering

33
BRDF Measurement
  • Gonio-Reflectometer
  • BRDF measurement
  • point light source position (?,?)
  • light detector position (?o ,?o)
  • 4 degrees of freedom
  • BRDF representation
  • m incident direction samples (?,?)
  • n outgoing direction samples (?o ,?o)
  • mn reflectance values

Stanford light gantry
34
Light Propagation through Air
35
Participating Media
36
Participating Media Contributions
Absorption coefficient
Scattering coefficient
Phase function
37
Dust and Aerosols
  • scattering is wavelength-dependent
  • yellow filter in b/w photography
  • orange sun glasses

38
The Index of Refraction
39
Wrap-Up
  • What you perceive is radiance
  • Different objects reflect light differently
    Bidirectional Reflectance Distribution Function
    (BRDF)
  • Light in air is absorbed, scattered, and bent
Write a Comment
User Comments (0)
About PowerShow.com