Title: Thermodynamics basics
1Thermodynamics basics
Zeroth Law
C
A
B
If A and B and B and C are in thermal equil, then
A and C are in thermal equil. ie. At same T
R Johnson/UAF/CEM/ME 2005
2KE and PE
KE 1/2mv2 PE mgh
So, m 1 kg, v 100 m/s, h 100 m, ?
KE 0.5104 kgm2/s2 5000 J via J
N-m and N kg m /s2
PE 19.8100 kg m2 /s2 980 J
3Thermal, chemical, nuclear energy
1 kg water with ?T 100 C changes internal
energy by ??U 420 kJ via mc ?T with c
4.2 kJ/kg/K
If evap at P 1 atm, ??U 2 MJ
1 kg liquid or gaseous fossil fuel has htg vl
44MJ
E m c2 ?? 9 x 1016 J via c 3 x 108 m
/s
RJ 4.02
4Energy amounts
BMR 70 W 240 Btu/hr
Home htg in Fbks 30 K Btu/hr in winter
Home electrical use 1000 kWh/mo 3.4 MBtu or
rate of 1.4 kW or 5 K Btu/hr
US energy use 90 Q/yr with Q 1015 Btu
? 10 kW/cap
RJ 4.02
5Relative masses
6Properties
h const
C P
SH
T
liq
saturated
P const.
s or v
Water Crit Pt at P 22 MPa, T 374 oC
RJ UAF
7SH steam
RJ UAF
8Sat. steam
9(No Transcript)
10 Properties of Saturated Water
T P vg uf ufg hf
hfg s sfg
oC MPa m3/kg
kJ/kg kJ/kg/K
11vg vs. P
P 0.02 0.05 0.10 vg 7.65 3.24 1.694
P 1 2 4 6 vg 0.194 0.0996 0.0498
0.0324
12hg vs P
P 0.02 0.05 0.1 0.2 0.5 1 hg 2610
2646 2676 2707 2749 2778
13First
First Law
Conservation of Energy
?E Q - W
Q
for system
W
E
eg. Q 100 kJ W 60 kJ
?E 40 kJ
mi
me
Each term gt 0 if by system
14For a cycle
?E 0 so Qnet W which leads to W QH - QL
2nd Law says all of QH cant be converted into
W or ? lt 100
15Closed transient
T
Q - W mu2 -u1
v
eg. Let SH steam at P1 5 MPa and 900 oC cool
at const v 0.1076 m3 /kg to 450 oC STs ? u1
3841 kJ/kg STs ? P2 3 MPa and u2 3020
kJ/kg So Q/ m - 821 kJ/kg
16Heat Xfer
Qdot -k dT/dx k lt 0.1 W/m/K for good
insulators
qdot
17Required insulation thickness
keep resting adult warm at T -10 oC. ka
0.026 W/m oK and Edot - Qdot Edot 70
W kA ?T/?x with ?T 40 oC. 70 W 1.04
A/?x W with A (m2 ) ?x (m ) A 2 m2
? ?x 2/70 m 3 cm
30 oC
Ta - 10 oC
2m
181st Law for CV
dEcv/dt mdot hin - hex Qdot - Wdot
Ecv mcv u 0.5v2 gzcv
We could also put KE PE terms on RHS of 1st eqn.
19Open sys in SSSF ? Qcv mi hi me he Wcv
Q
Qcv - 200 kW
W
i
mi me 3 kg/s
e
hi 3000 kJ/kg he 2600 kJ/kg
Wcv 33000 2600 200 1000 kW
Note dot omitted over Q, W, m
20Throttling
hi he
i
e
X
Eg. Steam at 4 MPa and 700 C exits valve at 0.5
MPa
h 3906 kJ/kg so Te 691 oC via
T 600 (3906 3702)/(3926 3702)
100 With 0.91
T
P
s ? from 7.62 to 8.47 because of
irreversibilities
s
21Steam Properties
22Boiler
e
i
T
Now take sat liq at 4 MPa entering boiler and
heat to 800 C
s
hi hf 1087 and he 4142 kJ/kg So q
he - hi 3055 kJ/kg
Note Tsat 250 C
23Heating of Liquid
Q m cp T2 - T1
Above true whether P const or not as heating
occurs
For water, cp c 1 Btu/lbm/ oF 4.2
kJ/kg/ K
24US Solar Insolation
25Solar water heater
http//www.eren.doe.gov/erec/factsheets/solrwatr.p
df
26NREL photo
27Solar Hot Water
Vancouver Int. Airport
375 K cost and annual savings of 67 K 100
panels heat 800 gph
http//www.solaraccess.com/news/story?storyid5271
28Solar water heating
solarwaterFbks.m NREL Fbks data vls are
monthly averages kWh/m2/day for March - Nov.
for surface tilted at lat angle of 64 deg mo
210 effic1 0.5 0.6 0.7ones(1,4) 0.6 0.5
0.4 Sinsoltilt9 2.4, 4.7, 5.6, 5.3, 5.2,
4.9, 4.2, 3.4, 2.0 avg 3.3 for yr if
mult by 3600, we convert to kJ/m2/day Tl 10
Th 40 rhow 1 kg/liter Cpw 4.2 effic
0.7 Toi Th Tl kJ/kg/K Volw
effic3600.Sinsoltilt9/Cpw/rhow/(Th - Tl) Volw1
3600.effic1.Sinsoltilt9/Cpw/rhow/(Th -
Tl) figure(2) plot(mo,Volw,mo,Volw1,'linewidth'
,2) grid on title('Warm water
prepared','fontsize',16) etc
29Fbks NREL solar data
30Solar Air Heater 1
PV panel
Solar air heater at UAF
31Data from Fieldpoint
1/12/03
UAF Energy Center
http//pug.engr.uaf.edu/data_html\011203_ecenter.h
tml
32Solar Air Heater
8 hr period represented
33Solar Air Heater
34Heat Engines
Receive heat at high T and reject to low T
QL
QH
W
? W/ QH 30
RJ UAF
35Carnot Cycle
0
TH
QH
2
3
QL TL s4 s1
QH /TH QL /TL
T
QH TH s3 s2
4
1
QL
TL
W QH - QL
s
? QH - QL /QH
? 1 - TL /TH
Is upper bound for heat engine
36Applications
Diesel electric generators, gas turbines
power plants
http//www.gensetcentral.com/pdf/js170uc.pdf
RJ UAF
37Example - DEG
Wel
6 gph fuel
138 K Btu/gal
QL
QH 818 K Btu/hr 242 kW and ? 33
? Wel 81 kW with rest of output as heat
flux up exhaust and rejected to jacket water and
ambient
13.5 kWh/gal
RJ UAF
38Second Law
Processes only proceed in certain drcts
Clausius Can't build cyclic device whose sole
effect is heat xfer from cold to hotter body.
39Entropy
or
Heat xfer thru finite ?T is irreversible
40Clausius Inequality
lt 0
Consider Rankine Cycle
3
P2 P3 1 MPa T2 100 C T3 350 C
SH vap
T
B
4
x 1
2
1
C
Sat liq
P
P1 P4 100 kPa and sat so T 100 C
41T
3
350 C
boiler
2a
180 C
turb
2
4
100 C
1
cond
s3 7.30
s
1.30
7.36
42Now calc
q23 /T23 q41 / T34
q23 h3 - h2 3051 417 2634 kJ/kg
q41 h1 - h4 - 2258 kJ/kg
q41 / T34 - 2258/373 -6.05 kJ/kg/K
Adiabatic from 1..2 and 3..4
43To calc.
Split into three parts
In CL regime,
h2a h2 /Tavg 762 418/413 0.83
In sat regime,
hfg /Tsat 2015/453 4.45
- h3 - hg /Tavg 3051 - 2778/538
- 0.51 so
In SH regime,
5.79
5.79 - 6.05 - 0.26
Note wnet q23 - q14 515 kJ/kg
44SSSF
Open sys in SSSF ? Sgen m se - si
Q/T
I To Sg Wrev W I
Q
e
i
45Example - ST
8 kg/s at 3 MPa
Q - 300 kW
450 oC
W
hi 3344 he 2769 W 8hi - he - 300
4. 3 MW
0.2 MPa 150 oC
Ex 7-15 CB
RJ UAF
46 Ex. cont.
si 7.083 se 7.280 kJ/kg/K so Sg
8se - si 300/298 2.56 kW/oK I To
Sg 765 kW Wrev W I 5.07 MW ?2
W/Wrev 85
RJ UAF
47If 1 kg water heated isothermally and reversibly
at 100 oC from sat liquid to sat vapor, 1st
Law? Q mu2 u1 Pv2 - v1 mh2
h1 1h2 - h1 1hfg 2257 kJ ?S
Q/T 2257/373 6.048 kJ/K m sfg
T
2
1
s or v
48Environmental Impacts
gt 1272 grams of fossil fuel and chemicals used to
produce a 32-bit DRAM memory chip mass of 2
grams Another 400 grams of fossil fuel
required to produce electricity to operate it
over its lifetime. This doesnt even account for
ultimate disposal cf ratio of 21 for automobile
Environmental Science Technology / January 1,
2003
49(No Transcript)
50(No Transcript)
51(No Transcript)
52(No Transcript)