Elements of Spatial Regression - PowerPoint PPT Presentation

1 / 47
About This Presentation
Title:

Elements of Spatial Regression

Description:

Cressie (1973) Statistics for Spatial Data, Revised Edition, Wiley ... Markov property. Independence. Distance-decay Correlation. Cressie: Application to SIDS Data ... – PowerPoint PPT presentation

Number of Views:56
Avg rating:3.0/5.0
Slides: 48
Provided by: cssCo
Category:

less

Transcript and Presenter's Notes

Title: Elements of Spatial Regression


1
Elements of Spatial Regression
  • Patrick J. Sullivan
  • Department of Natural Resources

2
References
  • Cressie (1973) Statistics for Spatial Data,
    Revised Edition, Wiley
  • Kaluzny et al. (1998) S Spatial Stats, Springer
  • Splus Statistics Software

3
(No Transcript)
4
(No Transcript)
5
(No Transcript)
6
(No Transcript)
7
Birth Rates
8
(No Transcript)
9
(No Transcript)
10
Elementary Linear Regression
11
Elementary Linear Regression
12
(No Transcript)
13
Wolfcamp Aquifer Data
14
Mean Value Over Y
15
Mean Value Over X
16
Standard Linear Modelvs.Spatial Correlation
Model
17
my.before.data lt- rnorm(20) my.after.data lt-
my.Lmatrix my.before.data
18
Spatial Correlation Model
19
So where does the problem lie?
20
Independent Correlated
21
Combined Linear and Correlative Model
22
The Catch-22
23
Possible Approaches
  • If small-scale spatial correlation, then regress
    and assess remaining correlation
  • REML (Restricted Maximum Likelihood)
  • Through first differences
  • Still a tricky business, so take care!
  • Should try to assess priorities
  • Trend or Variation
  • Response to External Drivers or Self organization

24
Universal Kriging Example
  • For data over a continuous spatial metric
  • Coal Ash Gomez and Hazen (1970)
  • Pittsburgh coal seam
  • Robena Mine, Greene County, PA

25
(No Transcript)
26
Universal Kriging
  • Exploratory Data Analysis
  • Removal of Trend Via Median Polish
  • Examination of Residual Variation
  • Estimate Variogram Correlation Model
  • Fit of Trend coal loc(x,y)xx2
  • Prediction Using Trend and Variation

27
(No Transcript)
28
Analyzing Lattice Data
29
(No Transcript)
30
sids15,
county county name id county identification
number easting x coordinate northing relative
y coordinate sid number of sids deaths births
number of births nwbirths nonwhite
births group county groupings sid.ft
Freeman-Tukey transf. of of sids to of
births nwbirth.ft Freeman-Tukey transf. of
nonwhite births to of births
31
(No Transcript)
32
Birth Rates
33
Sids Rates
34
8
2
3
9
7
10
4
1
6
5
35
1 2 3 4 5 6 7 8 2 1 3 4 7 8
8
2
3
9
7
10
4
1
6
5
36
1 2 1 3 1 4 1 5 1 6 1 7 1 8 2 1 2 3 2 4 2 7 2 8
1 2 3 4 5 6 7 8 2 1 3 4 7 8
37
Joint Probability Distributions
  • Conditional probability
  • Markov property
  • Independence

38
(No Transcript)
39
(No Transcript)
40
(No Transcript)
41
(No Transcript)
42
Distance-decay Correlation
  • Cressie

43
(No Transcript)
44
Application to SIDS Data
  • Per birth SIDS Rate Nonwhite Births
  • CAR Covariance Family
  • Coefficients
  • Value Std. Error t value
  • (Intercept) 1.6456 0.2385 6.8990
  • nwbirths.ft 0.0345 0.0066 5.2068
  • rho 0.6454

45
(No Transcript)
46
(No Transcript)
47
Conclusions
  • Trade-off in Modeling Trend vs. Variation
  • Identify Nature of Data and Objectives
  • Scale
  • Biophysical Understanding
  • Use
  • Visualize
Write a Comment
User Comments (0)
About PowerShow.com