Title: Plasma Spectroscopy and Atomic Physics
1Plasma Spectroscopy and Atomic Physics
2Plasma SpectroscopyDo we really need it?..
- Classical approach
- Coulomb interactions between the plasma
constituents (charged balls) govern the plasma
history. - Spectroscopic approach
- Agree but Plasma history affects the internal
properties of the plasma constituents (many-body
systems, not balls!) which are revealed via
emitted photons.
- Advantages
- Non-intrusive methods
- Remote diagnostics
- Extremely versatile
- High resolution in time and space
3Typical Experiment
Plasma
4Questions
- Atomic Physics
- What are the (free) ion properties?
- Why and how does an ion become excited?
- Why and how does an excited ion emit a photon?
- What are the properties of the emitted photon?
- Plasma Spectroscopy
- How are the free ion properties being affected by
the plasma environment? - How many excited ions are there? (What are the
populations?) - What happens to a photon traveling through the
plasma?
What can the registered photons tell us about
plasma properties ? Electron and ion densities,
electron and ion temperatures, ion stage
distributions, magnetic and electric fields,
turbulent fields, shock waves, energy losses,
5History
- Before 1950s
- atomic physics, astrophysics
- After 1950s
- fusion experiments
- 1964 H. R. Griem, Plasma Spectroscopy
- 1974 H. R. Griem, Spectral Line Broadening in
Plasmas - There is no journal on plasma spectroscopy!
6References
- Griem H.R. Principles of Plasma Spectroscopy,
Cambridge Univ. Press, 1997. - Shevelko V.P. and Vainshtein L.A. Atomic Physics
for Hot Plasmas, IOP Publishing, 1993. - Cowan R.D. The Theory of Atomic Structure and
Spectra, Univ. California Press, 1981.
7Units
- Energies/temperatures
- 1 eV 1.602x10-19 erg
- 11 604 K
- Ionization potential for H
- 1 Ry 13.61 eV
- T(room) 1/40 eV
- T(photosphere) 0.5 eV
- T(JET) 25 000 eV
- Wavelengths
- 1 Ã… 10-8 cm 1 nm 10 Ã…
- Size of the H-atom 1 Ã…
- Visible light
- ? 3500-7000 Ã…
- ?Ehc/? ? ?E 2-4 eV
- X-rays down to 1 Ã…
8Hydrogen Atom
- Coulomb potential (non-relativistic)
- H?i(r) Ei?i(r)
- quantum numbers n, l, j
- En-1/n2 lt 0 discrete spectrum
- with g2n2
- E?0 continuum
- The higher n, the larger r rn n2
- Bohr radius a0 0.529 Ã…
One-electron (hydrogen-like) ions ?E ? Z2 r
? Z-1
9Multielectron Ions
- Computational Methods
- Hartree-Fock (self-consistent field)
- Model potentials
- Perturbation theory
- Typical accuracy for level energies and
wavelengths ?3-5 - Some notations
- O I O0, O II O1,
- Configuration 1s22s22p53s (n1l1an2l2ß)
- Still Coulomb forcebut many-body problem we
just cannot solve it exactly! - Approximations
- Central field ? non-central interaction
(directexchange) ? spin-orbit (ls) interaction ?
relativistic corrections - Rigorous conservation laws
- Total angular momentum J
- Energy E
- Approximate conservation laws
- Orbital angular momentum L?li
- Total spin S?si
- Approximate quantum numbers
- ni, li, L, S
Spectroscopic charge
10Multielectron Ions contd
- LS coupling
- (light medium ions)
- L Sili S Sisi
- J LS
- Term 3P 2S1L
- Level 3P1 2S1LJ
-
- jj coupling (heavy ions)
- ji li si
- J Siji
11Radiative Processes
Strong transitions E1 (electric dipole) A108
s-1 for neutrals AZ4108 s-1 for ions Weak
transitions M1 (magnetic dipole), E2 (electric
quadrupole), some E1 (?S?0) A 1-100 s-1 for
neutrals A Z6-12 for ions Accuracy 10
E1
h?E1-E0
E0
spontaneous emission
absorption
stimulated emission
A ?E2 ?-2 Light intensity I(?)NuAh?
12Radiative Processes contd
O I lines 3P1-1D2 3P2-1D2 1D2-1S0
M1
E2
13EM fields Zeeman
- Magnetic field Zeeman effect
?E ? B
J
J
?
14EM fields Zeeman contd
Time-dependent spatially-resolved picture of
magnetic field penetration
BkG 0-2 2-4
4-6 6-8
8-10
15EM fields contd
- Electric field Stark effect
- Hydrogen ?E ? E (linear)
- Non-hydrogenic ions ?E ? E2 (quadratic)
16Collisional Processes
- Ion impact
- Excitation
- Aq Br ? Aq Br
- Ionization
- Aq Br ? Aq1 Br e
- Charge exchange (transfer)
- Aq Br ? Aq1 Br-1
- Normally ion-impact processes are less important
- Electron impact
- Excitation
- Aq e ? Aq e
- Deexcitation
- Aq e ? Aq e
- Ionization
- Aq e ? Aq1 e e,
- Aq e ? Aqn e ne
- 3-body recombination
- Aq1 e e ? Aq e
- Radiative recombination
- Aq1 e ? Aq hv
- Dielectronic capture
- Aq1 e ? Aq
17Collisional Processes contd
dO
n
n0
Area (cm2)
dsfi
outflux/solid angle
f2
dO
influx/unit area
Differential cross section
Total cross section
Scattering amplitude
18Collisional Processes contd
Asymptotics logE/E, 1/E, 1/E3
can help to find hot electrons!
Typical s pa02 10-16 cm2
Electron energy distribution function
velocity
Rate coefficient
Rate (s-1) RNe
Accuracy lt30
19Atomic Physics conclusions
- Basic principles are known, improving details
- Achieved accuracy lt1 or even better (!) for
energies and wavelengths, lt10 for transition
probabilities, lt20-30 for collisional cross
sections - and still some puzzles are discovered! (e.g.,
radiative recombination cross sections for
extremely small energies)
20Line Shapes and Shifts
Power spectrum
signal
infinite
sin(?0t)
infinite, decaying
Lorentz profile
exp(-?t/2)sin(?0t)
finite
sin(?0t), 0 ? t ? T
21Line Shapes and Shifts contd
I0
line core
G for Lorentz
FWHM full width at half maximum
I0/2
line shift
line wings
22Line Shapes and Shifts contd
Natural broadening Uncertainty principle
Lorentzian with G ? ?? 1/t and negligibly
small line width ??/? 10-8 Doppler effect (ion
temperature) Doppler shift ?? ? ? - ? 0 ?
0v/c ? I(?) ? f(?/?0-1c) Maxwellian ?
Gaussian I(?) I0exp-(?-?0)2c2/2v2?02
23Line Shapes and Shifts contd
- Convolution of (independent!) broadening effects
- Gauss Gauss Gauss
- ?2 ?12 ?22
- Lorentz Lorentz Lorentz
- ? ?1 ?2
- BUT
Gauss Lorentz Voigt!
24Line Shapes and Shifts contd
Collisional (Stark, resonance,) broadening
electrons and/or other ions interrupt or modify
the light train
Collisionally broadened line profiles depend on
particle densities!
u
l
25Plasma Environment Effects
Ionization potential lowering, ?I
High-n electrons do not see the ion!
Debye radius
Interparticle distance
26Radiation Transfer
I0
I1
plasma
emission
absorption
optical depth
optically thick
optically thin
27Radiation Losses
- Importance
- Magnetic fusion research
- Solar corona
- Free-free (bremsstrahlung)
- e Aq ? e Aq hv
- Free-bound (radiative recombination)
- e Aq1 ? Aq hv
- Bound-bound (spectral lines)
- Aq ? Aq hv
28Types of Equilibria
h? Planck
Complete Thermodynamic Equilibrium
ions Boltzmann
e Maxwell
Saha
Local thermodynamic equilibrium (LTE)
29Types of Equilibria LTE
Dense (or very dense) plasmas Collisional
processes radiative processes Ne 1013 Te1/2
?E3 cm-3 (Te, ?E in eV)
No atomic collisional data are needed!
30Types of Equilibria Corona
Low density plasmas (mainly) solar corona
Population balance equation NgRexcNuA I NuA
NgRexc Ioniz. and recomb. Ne
Depends only on excitation from the ground state!
spontaneous emission
excitation
ionization equilibrium is independent on Ne
31If theres no equilibrium?
ionization limit
ionization
excited states
recombination
ground state
ground state
Z1
Z
32Collisional-Radiative Modeling
All possible processes
Rate Matrix (atomic data!)
State Vector
Source Function
33Ionization equilibrium C
Solid Ne 1019 cm-3 Dashed Ne 1010 cm-3
34Example Diagnostics
35Example X-Ray Lasers
- Ordinary visible lasers long wavelengths
2,000-10,000 Ã… - X-ray lasers short wavelengths ? 500 Ã…
- ?E hc/? ? ?E ? 25 eV
- Neutral atoms small ?Es only (lt20 eV)
- Solution use highly-ionized atoms because ?E
Z2 - Source of multiply-charged ions
- only very hot plasmas!
- High density is required (i) to reach high
ionization stages quickly and (ii) to have high
lasing - Z-pinch plasma is hot and dense enough
- T 200 eV (2106 K) N 1020 cm-3
36Conclusions
- Plasma Spectroscopy
- interesting, useful, thought-provoking