Plasma Spectroscopy and Atomic Physics - PowerPoint PPT Presentation

1 / 36
About This Presentation
Title:

Plasma Spectroscopy and Atomic Physics

Description:

How are the free ion properties being affected by the plasma environment? ... spatially-resolved picture. of magnetic field. penetration. IPSTA. April 22, 2001. 15 WIS ... – PowerPoint PPT presentation

Number of Views:423
Avg rating:5.0/5.0
Slides: 37
Provided by: yuriral
Category:

less

Transcript and Presenter's Notes

Title: Plasma Spectroscopy and Atomic Physics


1
Plasma Spectroscopy and Atomic Physics
  • Yuri Ralchenko

2
Plasma SpectroscopyDo we really need it?..
  • Classical approach
  • Coulomb interactions between the plasma
    constituents (charged balls) govern the plasma
    history.
  • Spectroscopic approach
  • Agree but Plasma history affects the internal
    properties of the plasma constituents (many-body
    systems, not balls!) which are revealed via
    emitted photons.
  • Advantages
  • Non-intrusive methods
  • Remote diagnostics
  • Extremely versatile
  • High resolution in time and space

3
Typical Experiment
Plasma
4
Questions
  • Atomic Physics
  • What are the (free) ion properties?
  • Why and how does an ion become excited?
  • Why and how does an excited ion emit a photon?
  • What are the properties of the emitted photon?
  • Plasma Spectroscopy
  • How are the free ion properties being affected by
    the plasma environment?
  • How many excited ions are there? (What are the
    populations?)
  • What happens to a photon traveling through the
    plasma?

What can the registered photons tell us about
plasma properties ? Electron and ion densities,
electron and ion temperatures, ion stage
distributions, magnetic and electric fields,
turbulent fields, shock waves, energy losses,
5
History
  • Before 1950s
  • atomic physics, astrophysics
  • After 1950s
  • fusion experiments
  • 1964 H. R. Griem, Plasma Spectroscopy
  • 1974 H. R. Griem, Spectral Line Broadening in
    Plasmas
  • There is no journal on plasma spectroscopy!

6
References
  • Griem H.R. Principles of Plasma Spectroscopy,
    Cambridge Univ. Press, 1997.
  • Shevelko V.P. and Vainshtein L.A. Atomic Physics
    for Hot Plasmas, IOP Publishing, 1993.
  • Cowan R.D. The Theory of Atomic Structure and
    Spectra, Univ. California Press, 1981.

7
Units
  • Energies/temperatures
  • 1 eV 1.602x10-19 erg
  • 11 604 K
  • Ionization potential for H
  • 1 Ry 13.61 eV
  • T(room) 1/40 eV
  • T(photosphere) 0.5 eV
  • T(JET) 25 000 eV
  • Wavelengths
  • 1 Ã… 10-8 cm 1 nm 10 Ã…
  • Size of the H-atom 1 Ã…
  • Visible light
  • ? 3500-7000 Ã…
  • ?Ehc/? ? ?E 2-4 eV
  • X-rays down to 1 Ã…

8
Hydrogen Atom
  • Coulomb potential (non-relativistic)
  • H?i(r) Ei?i(r)
  • quantum numbers n, l, j
  • En-1/n2 lt 0 discrete spectrum
  • with g2n2
  • E?0 continuum
  • The higher n, the larger r rn n2
  • Bohr radius a0 0.529 Ã…

One-electron (hydrogen-like) ions ?E ? Z2 r
? Z-1
9
Multielectron Ions
  • Computational Methods
  • Hartree-Fock (self-consistent field)
  • Model potentials
  • Perturbation theory
  • Typical accuracy for level energies and
    wavelengths ?3-5
  • Some notations
  • O I O0, O II O1,
  • Configuration 1s22s22p53s (n1l1an2l2ß)
  • Still Coulomb forcebut many-body problem we
    just cannot solve it exactly!
  • Approximations
  • Central field ? non-central interaction
    (directexchange) ? spin-orbit (ls) interaction ?
    relativistic corrections
  • Rigorous conservation laws
  • Total angular momentum J
  • Energy E
  • Approximate conservation laws
  • Orbital angular momentum L?li
  • Total spin S?si
  • Approximate quantum numbers
  • ni, li, L, S

Spectroscopic charge
10
Multielectron Ions contd
  • LS coupling
  • (light medium ions)
  • L Sili S Sisi
  • J LS
  • Term 3P 2S1L
  • Level 3P1 2S1LJ
  • jj coupling (heavy ions)
  • ji li si
  • J Siji

11
Radiative Processes
Strong transitions E1 (electric dipole) A108
s-1 for neutrals AZ4108 s-1 for ions Weak
transitions M1 (magnetic dipole), E2 (electric
quadrupole), some E1 (?S?0) A 1-100 s-1 for
neutrals A Z6-12 for ions Accuracy 10
E1
h?E1-E0
E0
spontaneous emission
absorption
stimulated emission
A ?E2 ?-2 Light intensity I(?)NuAh?
12
Radiative Processes contd
O I lines 3P1-1D2 3P2-1D2 1D2-1S0
M1
E2
13
EM fields Zeeman
  • Magnetic field Zeeman effect

?E ? B
J
J
?
14
EM fields Zeeman contd
Time-dependent spatially-resolved picture of
magnetic field penetration
BkG 0-2 2-4
4-6 6-8
8-10
15
EM fields contd
  • Electric field Stark effect
  • Hydrogen ?E ? E (linear)
  • Non-hydrogenic ions ?E ? E2 (quadratic)

16
Collisional Processes
  • Ion impact
  • Excitation
  • Aq Br ? Aq Br
  • Ionization
  • Aq Br ? Aq1 Br e
  • Charge exchange (transfer)
  • Aq Br ? Aq1 Br-1
  • Normally ion-impact processes are less important
  • Electron impact
  • Excitation
  • Aq e ? Aq e
  • Deexcitation
  • Aq e ? Aq e
  • Ionization
  • Aq e ? Aq1 e e,
  • Aq e ? Aqn e ne
  • 3-body recombination
  • Aq1 e e ? Aq e
  • Radiative recombination
  • Aq1 e ? Aq hv
  • Dielectronic capture
  • Aq1 e ? Aq

17
Collisional Processes contd
dO
n
n0
Area (cm2)
dsfi
outflux/solid angle
f2

dO
influx/unit area
Differential cross section
Total cross section
Scattering amplitude
18
Collisional Processes contd
Asymptotics logE/E, 1/E, 1/E3
can help to find hot electrons!
Typical s pa02 10-16 cm2
Electron energy distribution function
velocity
Rate coefficient
Rate (s-1) RNe
Accuracy lt30
19
Atomic Physics conclusions
  • Basic principles are known, improving details
  • Achieved accuracy lt1 or even better (!) for
    energies and wavelengths, lt10 for transition
    probabilities, lt20-30 for collisional cross
    sections
  • and still some puzzles are discovered! (e.g.,
    radiative recombination cross sections for
    extremely small energies)

20
Line Shapes and Shifts
Power spectrum
signal
infinite
sin(?0t)
infinite, decaying
Lorentz profile
exp(-?t/2)sin(?0t)
finite
sin(?0t), 0 ? t ? T
21
Line Shapes and Shifts contd
I0
line core
G for Lorentz
FWHM full width at half maximum
I0/2
line shift
line wings
22
Line Shapes and Shifts contd
Natural broadening Uncertainty principle
Lorentzian with G ? ?? 1/t and negligibly
small line width ??/? 10-8 Doppler effect (ion
temperature) Doppler shift ?? ? ? - ? 0 ?
0v/c ? I(?) ? f(?/?0-1c) Maxwellian ?
Gaussian I(?) I0exp-(?-?0)2c2/2v2?02
23
Line Shapes and Shifts contd
  • Convolution of (independent!) broadening effects
  • Gauss Gauss Gauss
  • ?2 ?12 ?22
  • Lorentz Lorentz Lorentz
  • ? ?1 ?2
  • BUT

Gauss Lorentz Voigt!
24
Line Shapes and Shifts contd
Collisional (Stark, resonance,) broadening
electrons and/or other ions interrupt or modify
the light train
Collisionally broadened line profiles depend on
particle densities!
u
l
25
Plasma Environment Effects
Ionization potential lowering, ?I
High-n electrons do not see the ion!
Debye radius
Interparticle distance
26
Radiation Transfer
I0
I1
plasma
emission
absorption
optical depth
optically thick
optically thin
27
Radiation Losses
  • Importance
  • Magnetic fusion research
  • Solar corona
  • Free-free (bremsstrahlung)
  • e Aq ? e Aq hv
  • Free-bound (radiative recombination)
  • e Aq1 ? Aq hv
  • Bound-bound (spectral lines)
  • Aq ? Aq hv

28
Types of Equilibria
h? Planck
Complete Thermodynamic Equilibrium
ions Boltzmann
e Maxwell
Saha
Local thermodynamic equilibrium (LTE)
29
Types of Equilibria LTE
Dense (or very dense) plasmas Collisional
processes radiative processes Ne 1013 Te1/2
?E3 cm-3 (Te, ?E in eV)
No atomic collisional data are needed!
30
Types of Equilibria Corona
Low density plasmas (mainly) solar corona
Population balance equation NgRexcNuA I NuA
NgRexc Ioniz. and recomb. Ne
Depends only on excitation from the ground state!
spontaneous emission
excitation
ionization equilibrium is independent on Ne
31
If theres no equilibrium?
ionization limit
ionization
excited states
recombination
ground state
ground state
Z1
Z
32
Collisional-Radiative Modeling
All possible processes
  • Rate equations

Rate Matrix (atomic data!)
State Vector
Source Function
33
Ionization equilibrium C
Solid Ne 1019 cm-3 Dashed Ne 1010 cm-3
34
Example Diagnostics
35
Example X-Ray Lasers
  • Ordinary visible lasers long wavelengths
    2,000-10,000 Ã…
  • X-ray lasers short wavelengths ? 500 Ã…
  • ?E hc/? ? ?E ? 25 eV
  • Neutral atoms small ?Es only (lt20 eV)
  • Solution use highly-ionized atoms because ?E
    Z2
  • Source of multiply-charged ions
  • only very hot plasmas!
  • High density is required (i) to reach high
    ionization stages quickly and (ii) to have high
    lasing
  • Z-pinch plasma is hot and dense enough
  • T 200 eV (2106 K) N 1020 cm-3

36
Conclusions
  • Plasma Spectroscopy
  • interesting, useful, thought-provoking
Write a Comment
User Comments (0)
About PowerShow.com