Crash Simulations Using LSDYNA - PowerPoint PPT Presentation

1 / 19
About This Presentation
Title:

Crash Simulations Using LSDYNA

Description:

Use LS DYNA to determine the deformation of a frontal rail (or bar) after impact ... LULE UNIVERSITY OF TECHNOLOGY. Department of Computer Science and ... – PowerPoint PPT presentation

Number of Views:1894
Avg rating:3.0/5.0
Slides: 20
Provided by: Leva5
Category:

less

Transcript and Presenter's Notes

Title: Crash Simulations Using LSDYNA


1
Crash Simulations Using LS-DYNA
Getty Images
By Levaughn Denton
2
Outline
  • Background
  • Ls-Dyna
  • Front Rail Testing
  • Project Design/Methods
  • Front rail example
  • Dodge Neon example
  • Specific Aims
  • Quadtree hierarchical structure

3
LS DYNA Software (Livermore Software Technology
Corp.)
  • Solve multi-physics problems
  • Thermal stress
  • Load
  • Use LS DYNA to determine the deformation of a
    frontal rail (or bar) after impact
  • Using a single processor
  • 2 processor implementation is possible

4
LS DYNA Options
  • Several versions of LS DYNA
  • Windows
  • Parallel (memory can be allocated differently)
  • Serial
  • Unix
  • Parallel
  • Serial
  • Linux
  • Parallel
  • Serial
  • Each has its own set of keywords

5
Frontal Crash Simulation
  • Frontal rails play an integral role in crash
    tests
  • Responsible for absorbing energy during an impact
  • Amount of energy absorbed is directly
    proportional to a vehicles deformation

Getty Images
6
Crash Test Methodologies
  • Quasi-Static Testing
  • Frontal rail will experience deformation as a
    result of a constant force

Getty Images
7
Crash Test Methodologies Contd
  • Impact Testing
  • Frontal rail will experience deformation as a
    result of an initial impact speed that decreases
    with time

Velocity at Time 2 lt Velocity at Time 1
8
Simulate a Frontal Rail
  • Finite Element Model
  • Split into planes of symmetry in bar
  • Model only a portion of the bar
  • Crash into a rigid wall

Getty Images
9
LS-DYNA Input Parameters
  • Given the material parameters, a grid of nodes
    will be generated
  • 1369 nodes
  • Each node has an initial velocity in the z
    direction

Material Model 1 Density (g/cm3) 8.98 Elastic
Modulus (g/microsec.2 cm) 1.1 Tangent Modulus
(g/microsec2 cm) 1.0x10-3 Yield Strength
g/microsec2 cm) 4.0x10-3 Harding Parameter 1.0
Getty Images
10
LS-DYNA Input File
  • First block of code defines output parameters
  • Units gm, cm, microsec, 1e07 N, Mbar, 1e07
    N-cm

  • Control Ouput

  • ...gt....1....gt....2....gt....3....gt....4....gt....5
    ....gt....6....gt....7....gt....8
  • CONTROL_TERMINATION
  • endtim endcyc dtmin endneg
    endmas
  • 82.10
  • CONTROL_ENERGY
  • hgen rwen slnten rylen
  • 2

11
LS-DYNA Input File Contd
  • Second block of code defines Mesh and Material
    Parameters
  • Define Parts and Materials

  • ...gt....1....gt....2....gt....3....gt....4....gt....5
    ....gt....6....gt....7....gt....8
  • PART
  • pid sid mid eosid
    hgid adpopt
  • Bar
  • 1 1 1
  • MAT_PLASTIC_KINEMATIC
  • mid ro e pr
    sigy etan beta
  • 1 8.930 1.17 0.350
    0.004 0.001 1.0
  • src srp fs
  • 0.0 0.0 0.0

Material Model 1 Density (g/cm3) 8.93 Elastic
Modulus (g/microsec.2 cm) 1.1 Tangent Modulus
(g/microsec2 cm) 1.0x10-3 Yield Strength
g/microsec2 cm) 4.0x10-3 Harding Parameter 1.0
12
LS-DYNA Input Parameters Contd
Getty Images
Third block of code defines boundary definitions
Initial Conditions ...gt....1....gt....2....
gt....3....gt....4....gt....5....gt....6....gt....7....
gt....8 Nodes within box 2 are given an
initial velocity in the neg z-direction.
These are all the nodes except for those on the
bottom of the bar. INITIAL_VELOCITY nsid
nsidex boxid 0 0
2 vx vy vz vxe
vye vze 0.0 0.0 -0.0227
0.0 0.0 0.0
13
LS-DYNA Input Parameters Contd
Getty Images
Third block of code defines boundary definitions

Define
Nodes and Elements

Many nodes have boundary conditions to
simulate symmetry. NODE node
x y
z tc rc 1
0.000000E00 0.000000E00 0.000000E00
7 7 2 5.330000E-02
0.000000E00 0.000000E00 5 7
3 1.067000E-01 0.000000E00
0.000000E00 5 7 4
1.600000E-01 0.000000E00 0.000000E00
5 7 5 2.133000E-01
0.000000E00 0.000000E00 5 7
14
Results After Impact
HP Pavilion dv2700 3GB RAM w/ (2 CPUs) Time
278 secs 1 CPU
15
Neon Crashed Into a Rigid Wall
http//www.topcrunch.org/benchmark_results.sfe
16
Improving the Performance(software approach)
  • The mesh storage structure has a direct impact on
    the
  • the amount of memory used
  • the CPU time necessary for assembly
  • the complexity of the programming
  • Suggest the quadtree hierarchical structure is
    used to store information

17
Quadtree Structure Contd
  • Locate part of the frontal rail that experienced
    deformation using the boundary coordinates of a
    node

18
Quadtree Structure
LULEÅ UNIVERSITY OF TECHNOLOGY  Department of
Computer Science and Electrical Engineering
With a depth, d, a neighboring node can be found
in O(d 1) time.
19
Thank You
Write a Comment
User Comments (0)
About PowerShow.com