Avenue Architecture - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

Avenue Architecture

Description:

Interactive and Automatic Refinement of translation Rules ... Selectional restrictions. Idiom. Missing constraint. Extra constraint. TCTool (Demo) Add a word ... – PowerPoint PPT presentation

Number of Views:55
Avg rating:3.0/5.0
Slides: 18
Provided by: ariadnafo
Category:

less

Transcript and Presenter's Notes

Title: Avenue Architecture


1
Avenue Architecture
2
Interactive and Automatic Refinement of
translation Rules
  • Problem Improve Machine Translation Quality.
  • Proposed Solution Put bilingual speakers back
    into the loop use their corrections to detect
    the source of the error and automatically improve
    the lexicon and the grammar.
  • Approach Automate post-editing efforts by
    feeding them back into the MT system.
  • Automatic refinement of translation rules that
    caused an error beyond post-editing.
  • Goal Improve MT coverage and overall quality.

3
Technical Challenges
Automatic Evaluation of Refinement process
Elicit minimal MT information from non-expert
users
4
Error Typology for Automatic Rule Refinement
(simplified)
Interactive elicitation of error information
  • Missing word
  • Extra word
  • Wrong word order
  • Incorrect word
  • Wrong agreement

5
TCTool (Demo)
Interactive elicitation of error information
  • Add a word
  • Delete a word
  • Modify a word
  • Change word order

Actions
6
Types of Refinement Operations
Automatic Rule Adaptation
  • 1. Refine a translation rule
  • R0 ? R1 (change R0 to make it more specific
    or more general)

R0
una casa bonito
a nice house
R1
N gender ADJ gender
a nice house
una casa bonita
7
Types of Refinement Operations
Automatic Rule Adaptation
  • 2. Bifurcate a translation rule
  • R0 ? R0 (same, general rule)
  • ? R1 (add a new more specific rule)

R0
una casa bonita
a nice house
R1
ADJ type pre-nominal
un gran artista
a great artist
8
Automatic Rule Adaptation
A concrete example
Error Information Elicitation

error
Change word order SL Gaudí was a great artist
MT system output TL Gaudí era un artista
grande Ucorrection Gaudí era un artista
grande Gaudí era un gran artista
correction
clue word
Refinement Operation Typology
9
Automatic Rule Adaptation
  • Finding Triggering Feature(s)
  • ?(error word, corrected word) ?
  • ? need to postulate a new binary feature feat1
  • Blame assignment (from MT system output)
  • tree lt((S,1 (NP,2 (N,51 "GAUDI") )
  • (VP,3 (VB,2 (AUX,172 "ERA") )
  • (NP,8 (DET,03 "UN")
  • (N,45 "ARTISTA")
  • (ADJ,54 "GRANDE")
    ) ) ) )gt

ADJADJ great -gt grande ((X1Y1) ((x0
form) great) ((y0 agr num) sg) ((y0 agr gen)
masc))
ADJADJ great -gt gran ((X1Y1) ((x0
form) great) ((y0 agr num) sg) ((y0 agr gen)
masc))
S,1 NP,1 NP,8
Grammar
10
Refining Rules
Automatic Rule Adaptation
  • Bifurcate NP,8 ? NP,8 (R0) NP,8 (R1)
  • (flip order of ADJ-N)
  • NP,8
  • NPNP DET ADJ N -gt DET ADJ N
  • ( (X1Y1) (X2Y2) (X3Y3)
  • ((x0 def) (x1 def))
  • (x0 x3)
  • ((y1 agr) (y3 agr)) det-noun agreement
  • ((y2 agr) (y3 agr)) adj-noun agreement
  • (y2 x3)
  • ((y2 feat1) c ))

11
Refining Lexical Entries
Automatic Rule Adaptation
  • ADJADJ great -gt grande
  • ((X1Y1)
  • ((x0 form) great)
  • ((y0 agr num) sg)
  • ((y0 agr gen) masc)
  • ((y0 feat1) -))
  • ADJADJ great -gt gran
  • ((X1Y1)
  • ((x0 form) great)
  • ((y0 agr num) sg)
  • ((y0 agr gen) masc)
  • ((y0 feat1) ))

12
Evaluating Improvement
Automatic Rule Adaptation
  • Given the initial and final Translation Lattices,
    the Rule Refinement module needs to take into
    account, whether the following are present
  • Corrected Translation Sentence
  • Original Translation Sentence (labelled as
    incorrect by the user)

un artista gran un gran artista un grande artista
un artista grande
13
Evaluating Improvement
Automatic Rule Adaptation
  • Given the initial and final Translation Lattices,
    the Rule Refinement module needs to take into
    account, whether the following are present
  • Corrected Translation Sentence
  • Original Translation Sentence (labelled as
    incorrect by the user)

un artista gran un gran artista un grande
artista
un artista grande
14
Challenges and future work
  • Credit and Blame assignment from TCTool Log Files
    and Xfer engines trace
  • Order of corrections matters explore rule
    interactions
  • Explore the space between batch mode and fully
    interactive system
  • Online TCTool always running to collect
    corrections from bilingual speakers
  • ? make it into a game with rewards for the best
    users

15
Publications
  • Font Llitjós, A., J.G. Carbonell and A. Lavie. "A
    Framework for Interactive and Automatic
    Refinement of Transfer-based Machine Translation"
    EAMT 10th Annual Conference 30-31 May 2005,
    Budapest, Hungary.   
  • Font Llitjós, A., R. Aranovich and L. Levin.
    "Building Machine translation systems for
    indigenous languages". Second Conference on the
    Indigenous Languages of Latin America (CILLA II),
    27-29 October 2005, Texas, USA.  
  • Font Llitjós, A., K. Probst and J.G. Carbonell .
    "Error Analysis of Two Types of Grammar for the
    Purpose of Automatic Rule Refinement". AMTA,
    2004, Washington, USA.   
  • Font Llitjós, A. and J.G. Carbonell . "The
    Translation Correction Tool English-Spanish user
    studies. LREC, 2004. Lisbon, Portugal.   

16
Quechua?Spanish MT
  • V-Unit funded Summer project in Cusco (Peru)
    June-August 2005 preparations and data
    collection started earlier
  • Intensive Quechua course in Centro Bartolome de
    las Casas (CBC)
  • Worked together with two Quechua
    native and one non-native speakers
    on developing infrastructure
    (correcting elicited translations,
    segmenting and translating list of
    most frequent words)

17
Quechua ? Spanish prototype MT system
  • Stem Lexicon (semi-automatically
    generated) 753 lexical entries
  • Suffix lexicon 21 suffixes
  • (150 Cusihuaman)
  • Quechua morphology analyzer
  • 25 translation rules
  • Spanish morphology generation module
  • User-Studies 10 sentences, 3 users (2 native, 1
    non-native)
Write a Comment
User Comments (0)
About PowerShow.com