Hexapod Detector Mounts - PowerPoint PPT Presentation

About This Presentation
Title:

Hexapod Detector Mounts

Description:

A fabrication-friendly version... 5. 3/24/05. Bruce C. Bigelow ... Fabrication options for hexapod: Fabrication method may depend on hexapod material choice ... – PowerPoint PPT presentation

Number of Views:108
Avg rating:3.0/5.0
Slides: 28
Provided by: BruceB96
Learn more at: https://www.ucolick.org
Category:

less

Transcript and Presenter's Notes

Title: Hexapod Detector Mounts


1
Hexapod Detector Mounts
  • B. C. Bigelow, UM Physics
  • 3/24/05

2
Hexapod Detector Mounts
  • Motivations
  • Provide a common mount design for Vis and IR
    detectors
  • Minimize detector package SS thermal stresses
  • Minimize detector package SS temperature
    gradients
  • Accommodate various detector package materials
    (Invar, TZM)
  • Accommodate various FPA baseplate materials (TZM,
    SiC, ?)
  • Accommodate local detector PCBs, connectors,
    heaters, etc.
  • Minimize weight, maximize first resonance

3
Hexapod Detector Mounts
Detector space frame! but fabrication
unfriendly
4
Hexapod Detector Mounts
A fabrication-friendly version
5
Hexapod Detector Mounts
  • Fabrication options for hexapod
  • Fabrication method may depend on hexapod material
    choice
  • Powder metallurgy methods (HIP, laser sintering)
  • Abrasive water-jet cutting
  • Laser cutting
  • Plunging and/or wire EDM
  • Stress-relieve rough blanks prior to cutting
  • Polish blanks flat and parallel prior to cutting
  • Final grind/polish mounting pads to spec. after
    cutting
  • Other?

6
Hexapod Detector Mounts
7
Hexapod Detector Mounts
Arbitrary mount height of 12mm can be lower
8
Hexapod Detector Mounts
9
Hexapod Detector Mounts
10
Hexapod Detector Mounts
11
Finite Element Analyses
  • Quantify performance via FE analyses
  • Hexapod flexures are 1mm wide x 3mm high (all
    cases)
  • Hexapod material is TZM (Invar another option)
  • Static analyses 100g deflections and stresses
  • Dynamic analyses first 10 frequencies and mode
    shapes
  • Steady-state thermal stress for -150K temp
    excursions
  • Steady-state thermal heat flow and temperature
    gradients
  • Summary follows individual results

12
Focal Plane Material Properties
Room temp. material properties
Material Properties TZM (Moly) Invar 36 SiC (CVD)
E (GPa) 325.0 147.0 466.0
Yield (MPa) 415.0 300.0 470.0
Density (kg/m3) 10160 8050 3210
CTE (PPM/K) 4.90 1.26 2.20
K (W/mK) 138 11.1 300
13
FEA - static
  • Static FEA
  • 100g accelerations, Gx, Gy, Gz
  • Det. package base models only, no AlN, MCT,
    epoxy, etc.
  • Two material combinations Invar/TZM, and
    TZM/TZM
  • Simplified model of hexapod mount (no pads)
  • Max deflections 1.5 - 1.9 microns
  • Max stresses 20 - 26 MPa (Invar/TZM)
  • Invar yield 300 MPa
  • TZM yield 860 Mpa
  • Low stress in package material - max. 20 Mpa
    (point load)

14
FEA - static
Deflections in meters, 1.4 microns max.
Gz, Z-axis deflections 1.4 microns max
15
FEA - static
Stress in Pa, 26 MPa max., (point loads)
Gz, Z-axis deflections 1.4 microns max
16
FEA - dynamic
  • Dynamic FEA
  • Det. package base models only, no AlN, Si, MCT,
    epoxy, etc.
  • Two material combinations Invar/TZM, and
    TZM/TZM
  • Simplified model of TZM hexapod mount
  • First resonances
  • TZM/invar 3000 Hz
  • TZM/TZM 3053 Hz

17
FEA - dynamic
Gz, Z-axis deflections 1.4 microns max
18
FEA steady state thermal
  • Steady-state thermal stress
  • Minus 150 K temperature excursion
  • Baseplate, hexapod mount, and package base
  • Four material combinations for baseplate and
    package
  • TZM/Invar, TZM/TZM, SiC/TZM, SiC/Invar
  • Simplified model of hexapod mount (no pads)
  • Deflections 6.9 8.7 microns (TZM/TZM,
    TZM/Invar)
  • Deflections 7.9 - 9.7 microns (SiC/Invar,
    SiC/TZM)
  • Pkg stresses 2.3 Mpa (TZM/Invar)
  • Pkg stresses 1.1 - 1.7 Mpa (SiC/TZM, SiC/Invar)

19
FEA steady state thermal
Elements
Gz, Z-axis deflections 1.4 microns max
20
FEA steady state thermal
Stress in Pa, 14.8 MPa max. (point loads)
21
FEA steady state thermal
  • Steady-state heat flow
  • Baseplate, hexapod mount, and package base
  • 200 mW heat load imposed on top surface of
    package
  • Baseplate back side sunk to a cold source at
    140 K
  • Four material combinations for baseplate and
    package
  • TZM/Invar, TZM/TZM, SiC/TZM, SiC/Invar
  • Simplified model of TZM hexapod mount (no pads)
  • Max. temp variation 0.56 K (TZM/Invar)
  • Min. temp variation 0.05 K (SiC/TZM and TZM/TZM)
  • Min final temp 142.3 K (SiC/TZM)
  • Max final temp 144.6 K (TZM/Invar)

22
FEA steady state thermal
Boundary cond.
23
FEA steady state thermal
Temp variations (K) SiC/TZM
24
FEA summary
Materials Materials Pkg, 100g, X,Y,Z Pkg, 100g, X,Y,Z Pkg, 100g, X,Y,Z Pkg, 100g, X,Y,Z Fn -150K hex pkg D T Tf
Base Pkg ux uy uz s,MPa Hz uz s,Mpa s,MPa K K
TZM Inv. 1.9 1.9 1.5 20.8 3000 8.7 20.3 2.3 0.56 144.6
TZM TZM 1.9 1.9 1.4 26.1 3053 6.9 -- -- 0.05 142.4
SiC Inv. -- -- -- -- -- 9.7 28 1.7 0.56 144.5
SiC TZM -- -- -- -- -- 7.9 14.8 1.1 0.05 142.3
deflections, u, in microns
25
Detector mount taxonomy
Yale flex
LBL flex
UM flex
UM hexapod
26
Detector mount comparison
Pkg thermal stress, -150K Pkg temp gradient First resonance
Design MPa K Hz
Yale flex 41 0.2 1508
LBL flex 31 0.1 988
UM flex 5.6 0.1 3216
UM hexapod 21 0.05 3000
27
Hexapod Detector Mounts
  • Conclusions
  • Hexapod mount kinematically connects detectors to
    focal plane
  • Low thermal stress for -150 K temperature change
  • Large conduction cross-section minimizes thermal
    gradients
  • Common mount design works for both NIR and VIS
    detector packages
  • Very low thermal stresses in base plate, mount,
    and packages
  • Hexapod provides optimal support for detectors
  • Minimum mass, maximum stiffness solution
  • Very high first resonance 3000 Hz or higher
  • Hexapod mount is readily fabricable by standard
    methods
  • Hexapod performance demonstrated via FE analysis
Write a Comment
User Comments (0)
About PowerShow.com