Title: Hexapod Detector Mounts
1Hexapod Detector Mounts
- B. C. Bigelow, UM Physics
- 3/24/05
2Hexapod Detector Mounts
- Motivations
- Provide a common mount design for Vis and IR
detectors - Minimize detector package SS thermal stresses
- Minimize detector package SS temperature
gradients - Accommodate various detector package materials
(Invar, TZM) - Accommodate various FPA baseplate materials (TZM,
SiC, ?) - Accommodate local detector PCBs, connectors,
heaters, etc. - Minimize weight, maximize first resonance
3Hexapod Detector Mounts
Detector space frame! but fabrication
unfriendly
4Hexapod Detector Mounts
A fabrication-friendly version
5Hexapod Detector Mounts
- Fabrication options for hexapod
- Fabrication method may depend on hexapod material
choice - Powder metallurgy methods (HIP, laser sintering)
- Abrasive water-jet cutting
- Laser cutting
- Plunging and/or wire EDM
- Stress-relieve rough blanks prior to cutting
- Polish blanks flat and parallel prior to cutting
- Final grind/polish mounting pads to spec. after
cutting - Other?
6Hexapod Detector Mounts
7Hexapod Detector Mounts
Arbitrary mount height of 12mm can be lower
8Hexapod Detector Mounts
9Hexapod Detector Mounts
10Hexapod Detector Mounts
11Finite Element Analyses
- Quantify performance via FE analyses
- Hexapod flexures are 1mm wide x 3mm high (all
cases) - Hexapod material is TZM (Invar another option)
- Static analyses 100g deflections and stresses
- Dynamic analyses first 10 frequencies and mode
shapes - Steady-state thermal stress for -150K temp
excursions - Steady-state thermal heat flow and temperature
gradients - Summary follows individual results
12Focal Plane Material Properties
Room temp. material properties
Material Properties TZM (Moly) Invar 36 SiC (CVD)
E (GPa) 325.0 147.0 466.0
Yield (MPa) 415.0 300.0 470.0
Density (kg/m3) 10160 8050 3210
CTE (PPM/K) 4.90 1.26 2.20
K (W/mK) 138 11.1 300
13FEA - static
- Static FEA
- 100g accelerations, Gx, Gy, Gz
- Det. package base models only, no AlN, MCT,
epoxy, etc. - Two material combinations Invar/TZM, and
TZM/TZM - Simplified model of hexapod mount (no pads)
- Max deflections 1.5 - 1.9 microns
- Max stresses 20 - 26 MPa (Invar/TZM)
- Invar yield 300 MPa
- TZM yield 860 Mpa
- Low stress in package material - max. 20 Mpa
(point load)
14FEA - static
Deflections in meters, 1.4 microns max.
Gz, Z-axis deflections 1.4 microns max
15FEA - static
Stress in Pa, 26 MPa max., (point loads)
Gz, Z-axis deflections 1.4 microns max
16FEA - dynamic
- Dynamic FEA
- Det. package base models only, no AlN, Si, MCT,
epoxy, etc. - Two material combinations Invar/TZM, and
TZM/TZM - Simplified model of TZM hexapod mount
- First resonances
- TZM/invar 3000 Hz
- TZM/TZM 3053 Hz
17FEA - dynamic
Gz, Z-axis deflections 1.4 microns max
18FEA steady state thermal
- Steady-state thermal stress
- Minus 150 K temperature excursion
- Baseplate, hexapod mount, and package base
- Four material combinations for baseplate and
package - TZM/Invar, TZM/TZM, SiC/TZM, SiC/Invar
- Simplified model of hexapod mount (no pads)
- Deflections 6.9 8.7 microns (TZM/TZM,
TZM/Invar) - Deflections 7.9 - 9.7 microns (SiC/Invar,
SiC/TZM) - Pkg stresses 2.3 Mpa (TZM/Invar)
- Pkg stresses 1.1 - 1.7 Mpa (SiC/TZM, SiC/Invar)
19FEA steady state thermal
Elements
Gz, Z-axis deflections 1.4 microns max
20FEA steady state thermal
Stress in Pa, 14.8 MPa max. (point loads)
21FEA steady state thermal
- Steady-state heat flow
- Baseplate, hexapod mount, and package base
- 200 mW heat load imposed on top surface of
package - Baseplate back side sunk to a cold source at
140 K - Four material combinations for baseplate and
package - TZM/Invar, TZM/TZM, SiC/TZM, SiC/Invar
- Simplified model of TZM hexapod mount (no pads)
- Max. temp variation 0.56 K (TZM/Invar)
- Min. temp variation 0.05 K (SiC/TZM and TZM/TZM)
- Min final temp 142.3 K (SiC/TZM)
- Max final temp 144.6 K (TZM/Invar)
22FEA steady state thermal
Boundary cond.
23FEA steady state thermal
Temp variations (K) SiC/TZM
24FEA summary
Materials Materials Pkg, 100g, X,Y,Z Pkg, 100g, X,Y,Z Pkg, 100g, X,Y,Z Pkg, 100g, X,Y,Z Fn -150K hex pkg D T Tf
Base Pkg ux uy uz s,MPa Hz uz s,Mpa s,MPa K K
TZM Inv. 1.9 1.9 1.5 20.8 3000 8.7 20.3 2.3 0.56 144.6
TZM TZM 1.9 1.9 1.4 26.1 3053 6.9 -- -- 0.05 142.4
SiC Inv. -- -- -- -- -- 9.7 28 1.7 0.56 144.5
SiC TZM -- -- -- -- -- 7.9 14.8 1.1 0.05 142.3
deflections, u, in microns
25Detector mount taxonomy
Yale flex
LBL flex
UM flex
UM hexapod
26Detector mount comparison
Pkg thermal stress, -150K Pkg temp gradient First resonance
Design MPa K Hz
Yale flex 41 0.2 1508
LBL flex 31 0.1 988
UM flex 5.6 0.1 3216
UM hexapod 21 0.05 3000
27Hexapod Detector Mounts
- Conclusions
- Hexapod mount kinematically connects detectors to
focal plane - Low thermal stress for -150 K temperature change
- Large conduction cross-section minimizes thermal
gradients - Common mount design works for both NIR and VIS
detector packages - Very low thermal stresses in base plate, mount,
and packages - Hexapod provides optimal support for detectors
- Minimum mass, maximum stiffness solution
- Very high first resonance 3000 Hz or higher
- Hexapod mount is readily fabricable by standard
methods - Hexapod performance demonstrated via FE analysis