EE365 - PowerPoint PPT Presentation

About This Presentation
Title:

EE365

Description:

analog voltages LOW, HIGH -- 0, 1. Negative logic -- seldom used ... Duality. Swap 0 & 1, AND & OR. Result: Theorems still true. Why? ... – PowerPoint PPT presentation

Number of Views:57
Avg rating:3.0/5.0
Slides: 22
Provided by: johnf205
Category:
Tags: duality | ee365

less

Transcript and Presenter's Notes

Title: EE365


1
EE365
  • Boolean algebraCombinational-circuit analysis

2
Boolean algebra
  • a.k.a. switching algebra
  • deals with boolean values -- 0, 1
  • Positive-logic convention
  • analog voltages LOW, HIGH --gt 0, 1
  • Negative logic -- seldom used
  • Signal values denoted by variables(X, Y, FRED,
    etc.)

3
Boolean operators
  • Complement X (opposite of X)
  • AND X Y
  • OR X Y
  • Axiomatic definition A1-A5, A1-A5

binary operators, describedfunctionally by truth
table.
4
More definitions
  • Literal a variable or its complement
  • X, X, FRED, CS_L
  • Expression literals combined by AND, OR,
    parentheses, complementation
  • XY
  • P Q R
  • A B C
  • ((FRED Z) CS_L A B C Q5) RESET
  • Equation Variable expression
  • P ((FRED Z) CS_L A B C Q5)
    RESET

5
Logic symbols
6
Theorems
  • Proofs by perfect induction

7
More Theorems
  • N.B. T8, T10, T11

8
Duality
  • Swap 0 1, AND OR
  • Result Theorems still true
  • Why?
  • Each axiom (A1-A5) has a dual (A1-A5)
  • CounterexampleX X Y X (T9)X X Y X
    (dual)X Y X (T3)????????????

X (X Y) X (T9)X (X Y) X (dual)(X
X) (X Y) X (T8)X (X Y) X
(T3) parentheses,operator precedence!
9
N-variable Theorems
  • Prove using finite induction
  • Most important DeMorgan theorems

10
DeMorgan Symbol Equivalence
11
Likewise for OR
  • (be sure to check errata!)

12
DeMorgan Symbols
13
Even more definitions (Sec. 4.1.6)
  • Product term
  • Sum-of-products expression
  • Sum term
  • Product-of-sums expression
  • Normal term
  • Minterm (n variables)
  • Maxterm (n variables)

14
Truth table vs. minterms maxterms
15
Combinational analysis
16
Signal expressions
  • Multiply outF ((X Y) Z) (X Y Z)
    (X Z) (Y Z) (X Y Z)

17
New circuit, same function
18
Add out logic function
  • Circuit

19
Shortcut Symbol substitution
20
Different circuit, same function
21
Another example
Write a Comment
User Comments (0)
About PowerShow.com