Title: Search for the Lepton-Flavour Violating Decay m
1Search for the Lepton-Flavour Violating Decaym
e g Presented by Peter-Raymond Kettle
(PSI)on behalf of the MuEGamma
Collaboration6th International WorkshopHeavy
Quarks and LeptonsVietri s/m, Salerno,
Italy27th May 1st June 2002
2Physics Motivation
- Minimal Standard Model (SM)-
- Baryon Number, Lepton Flavour Lepton Number -
conserved ! - neutrinos massless - no oscillations !
- Hence processes such as ??e?, ?? e, ?? eee,
K0L??e, Z0??e ?-oscillations - 0???-decay are sensitive tools to probe
physics beyond the Standard Model - Discovery of ?-oscillations (Super-K)
- g-2 Results (BNL)
- Evidence for 0???-decay (Heidelberg/Moscow)
- Proton Decay ??? (Kolar Goldfield)
- Extensions to SM -( with ?-oscillations) -
Predict LFV rates too small to be observed - Extensions beyond SM - Predict LFV BNV at a
measurable level - (e.g. see Barbieri Hall, Hisano et al.)
- Super Symmetry (SUSY-GUTs)
- SU(5) 10-13lt Br( meg) lt 10-15
- SO(10) 10-11lt Br( meg) lt 10-13
-
- !!! Just below Present Experimental Bound
lt1.210-11 !!!
Further Stimulate the search for LFV in the
charged Lepton Sector
?? ? e ?
? ? ? ?
3Physics Motivation cont.
e.g. Prediction Br(??e?) vs. parameter space in
SUSY SU(5) see J. Hisano et al. Phys. Lett. B391
(1997) 341
MuEGamma Goal 10-14
Similar plots for ?? e conversion with R?e-
ranging between (10-14 - 10-17) over
most of the parameter ranges MECO(BNL)-goal
single event sensitivity of 2.10-17
tan(?) - ratio of vac. expec. values of Higgs
Fields ? - Higgs Fields mixing parameter
4Physics Motivation cont.
Mega Limit
5Experimental Chronology
- Experimental LFV-Searches have a Long History -
- goes back to 1947 E. P. Hincks B. Pontecorvo,
using cosmic rays (??e?) - Improvement about 2-Orders of Magnitude per
Decade - muons seem to provide the most sensitive limits
(copious source, small mass, long life) - Most Promising Candidates in the Charged Lepton
Sector ?? e? ? ?? e
MEG(LAMPF) M.L. Brooks et al BR(??e?)lt 1.210-11
SINDRUM II (PSI) BR(??e)lt 6.110-13
Present Generation
Next Generation
PRIME(JAERI) Sensitivity 10-18
MuEGamma(PSI) Sensitivity 10-14
MECO(BNL) Sensitivity 210-17
6?? e? Chronology
- End of 70s Meson Factories take over
- competition
- higher intensity beams
- Duty cycle
PSI LOI 1998 Proposal 1999 Approval 1999
7PSI LFV
PSI also has a tradition in LFV-searches
PSI
Present most Sensitive Measurements
Reaction 90 CL
Br(?-Au?e-Au) New Prelim.
Br(?-Ti?e-Ti) 6.110-13
Br(??ee-e) 110-12
Br(?-Pb?e-Pb) 4.610-11
Br(?-S?e-S) 710-11
PMM(??e-? ?-e) 8.310-11
Br(?-Ti?eCa) 1.710-12
Br(?-S?eSi) 910-10
Paul Scherrer Institute
Sindrum II-Collab. M M- Collab. SIN-measurements
- 600 MeV Ring Cyclotron
- 1.8-2mA Proton Current
- DC Beam 100 Duty Cycle
- ?E5 Surface Muon Beam gt108?s-1
8Latest on (? ?Au ? e ?Au ) from Sindrum II
Coherent ?-less conversion of ??e in a
Muonic Atom
- muon stops in matter, forms muonic atom
- muon cascades to 1S-state lt10-16s
- coherent interaction with nucleus ( left in
- ground state) converts to electron without ?s
- Conversion Energy Ee M?-B?-RAu? 95.55227 MeV
- However- more often
- captured
- on nucleus
- or
- Decays in a
- Coulomb-bound orbit (MIO)
Hence Signature Single Electron of 96MeV
- Experimental Backgrounds
- ?-decay in orbit (MIO)
- Emax E?e dN/dE ? (Emax-Ee)5
- (ii) Radiative Muon Capture(RMC)
- E? E?e 0.7 MeV
- (iii) Radiative Pion Capture(RPC)
- E? lt130MeV (lt2)
- (iv)Cosmics induced es (tracking)
- Why Gold?
- Linear rise of Conversion Probability predicted
- for heavy elements
- Lightweight Construction (background)
- Single Isotope (good for ??e Search)
9Sindrum II ??e Conversion on Gold
- 52 MeV/c ?? beam
- ???-separation beg. PMC 8.5m
- ?? stop in 40micron Au Tg.
- e? tracked Hodo. Cerenkov
- DCs
- ??Au X-rays Ge for Norm.
- No Signal Observed !
Expected Signal at 5x10-12
Preliminary ! ! !
10New ??e? Experiment at PSI
11??e? Experimental Principle
- Basic Requirements
- High stop-density (rate) m -beam with high duty
factor (accidentals) - High resolution g-detection (angle energy,
accidentals) - Solenoidal magnetic spectrometer
(p-determination) - Fast, high resolution tracking chambers for e
momentum determination (p- angle) - Timing counter for e (angle time)
12Beam Transport System
13Detector Overview Required Performance
- Simulated Performance FWHM
- DEe 0.7
- DEg 1.4 2.0
- Dqeg 12 14 mrad
- Dteg 150 ps
14Photon Detection
Detector requirements Excellent energy-,
timing-, and position resolutions
Liquid Xenon Scintillation Detector
Mass number 131.29
Density 3.0 g/cm3
Boiling/ melting points 165 K 161 K
Energy per photon 24 eV
Radiation length 2.77 cm
Decay time (fa) (slow) (recombi.) 4.2 nsec 22 nsec 45 nsec
Scintillation light ? 175 nm
Refractive index 1.57 1.75
NaI too slow CsI BGO poor ?E/E at 52.8
MeV In homo. coverage
15Small Prototype Calorimeter
- Total 32 x PMTs
- Active Xe volume
- 116 x 116 x 174 mm3 (2.3liter)
- Energy-, Position-, and Timing resolution
measured for - gammas up to 2MeV
- Simple extrapolation to 52.8 MeV
- gammas implies
- senergy 1,
- sposition a few mm,
- stime 50psec
- To be tested with Large Prototype
16Large Prototype LXe Calorimeter
Final Performance Parameters to be
achieved lateral ?x4mm, depth ?z16 mm ?E
1.4 , ?t 100 ps all FWHM
- Currently
- construction finished
- 228 PMTs
- 69 litres LXe
- cryogenics working well
- initial beam test 40 MeV
- gammas at AIST Tsukuba
- cosmic ray measurements
17Positron Detection
- COBRA Spectrometer (Constant Bending Radius)
- Thin superconducting magnet with gradient field
- Drift chambers for positron tracking
- Scintillation counter arrays for positron timing
triggering
18Positron Spectrometer COBRA
therefore easy to look
for Large Radius Tracks i.e. fixed PTOT
e from meg
19COBRA Magnet
- Cable Fabricated
- Winding Started
- Cryostat construction
- Assembly by End of 2002
20Positron Tracking Drift Chambers
Drift-cell Structure
z-determination
- 16 planar chambers with each 18 sense-wires
- aligned radially at 10 intervals
- Staggered cells measure both position r µ (t1-t2)
sr200 mm and time t µ (t1t2)/2 st5 ns - He C2H6 gas to reduce multiple scattering
- Vernier pattern to determine z-coordinate
- sz 300 mm
21Positron Timing Counters
Hodoscope Layout
Cosmic Ray Test
CORTES Facility INFN Pisa
- Scintillator bar
- (5cm x t1cm x 100cm long)
- Telescope of 8 x MSGC
- Measured resolutions
- stime60psec independent of incident position
- stime improves as 1/vNpe
22Trigger
- ?-stopping rate
108 s-1 - Fast LXe energy sum ??? gt 45MeV
2?103 s-1 - time correlation g e
200 s-1 - g interaction point (PM with Qmax on front face
only) - extrapolate to target centre correlate
with - e impact point on timing counter
- angular corrlation g e
20 s-1 - cut on Rmax of drift chambers ?
10 s-1
Photon direction selection in ? for a meg
event ( PMT with QMAX ) gives
a 7.5º spread (5 counters) in the e- timing
counters (one coloured band)
- Digital Trigger
- 2GHz Waveform digitization
- 100 MHz FADCs FPGAs
- baseline subtraction
- QT-Alogorithm (Qmax t)
- latency 350 ns
23Conclusions
Recent Experiments have improved LFV limits in
the charged sector Still NO Signal Found !
??e? at 10-13 level
MEGA
Sindrum II
New Experiments plan to improve Single Event
Sensitivities gt 103
MuEGamma
MECO
Simulation HOPEFULLY REALITY !
With LFV results from neutrino sector Prospects
for signature of New Physics e.g. SUSY-GUT good !
24Timescale
- All Detector Systems under development
- RD phase still in progress
- Next significant Milestone Large Prototype test
- Beam studies PSI ??? planned for 2002
Further interest
http//meg.icepp.s.u-tokyo.ac.jp http//meg.pi.inf
n.it http//meg.psi.ch