Title: DD Lite: Efficient Incremental Search with State Dominance
1DD Lite Efficient Incremental Search with State
Dominance
- Paper by G. Ayorkor Mills-Tettey, Anthony Stentz,
and M. Bernardine Dias
Presented on 1 October 2007 in 16-735 Motion
Planning by Ross A. Knepper and Sean Hyde
2D Lite
- As we saw in class last week, D Lite is an
optimal, efficient algorithm for performing
incremental search in a 2D grid. - It optimizes an objective function, g(s).
- For example, D Lite can be used to find the
lowest time-cost path in a grid - total cost19
-
S
G
3D Lite
- As we saw in class last week, D Lite is an
optimal, efficient algorithm for performing
incremental search in a 2D grid. - It optimizes an objective function, g(s).
- For example, D Lite can be used to find the
lowest time-cost path in a grid - total cost20
- even when costs change.
S
G
4Preview DD Lite
- DD Lite modifiesD Lite in order to reason
about additional cost dimensions such as energy
expenditure.
DD Lite path
D Lite path
5Augmented States
- D Lite uses a state like (x, y).
- Some problems have other information that is
important to find the best path. - Augment the state with extra terms to indicate
other factors. - Example. Battery energy level s(x, y, e).
- What are the implications of that extra dimension?
6Effect of State Augmentation
- In normal D Lite, two equal-cost paths to the
same position constitute a tie, which is broken
arbitrarily. - With an augmented state, there are more states to
search, but the answer which optimizes the whole
state will be found. - How to handle extra dimension(s) efficiently?
7State Dominance
- Definition. State s1 dominates another state s2
when no solution through s2 leads to a solution
as good as the best solution that can be obtained
through s1. - Note that dominance defines only a partial
ordering on the set of all states, S. - In practical usage, selection of dominance
neighbors is always problem-specific.
Example. Suppose there are two ways for a Mars
Rover to get to the same position in the same
amount of time, but one of them uses less battery
power. s1 (xi, yi, e1) dominates s2 (xi,
yi, e2) when e1 lt e2.
8Dominance Relations
- Definition. A dominance relation exists between
two states when one state dominates the other. - Properties
- Non-reflexivity A state cannot dominate itself.
- Non-symmetry If a state u dominates a state v,
then v does not dominate u. - Transitivity If a state u dominates another
state v, and v in turn dominates w, then u
dominates w. - In general, it can be hard to know whether two
states have a dominance relation or not.
9Why Use State Dominance?
- A dominated state can never lead to a better
solution than the best solution that can be
obtained from the dominating state. - Can prune dominated states out of the search
without loss of optimality. - Consequently, the path well find from start to
goal will be free of dominated states. - Speeds up the search
- Breaks ties in the best cost path using a second
meaningful metric.
10State Dominance Example
- There are separate time- and energy- cost maps
show the respective time and energy penalties for
crossing each cell. - The shade of a 2D cell in the energy cost map
represents the derivative of energy the rate at
which the battery level changes. - The 3D state contains position and an absolute
energy level, which is the result of traversing
the cost map.
11State Dominance Example
Time-cost map
Energy-cost map
S
S
G
G
- There are separate time- and energy- cost maps
show the respective time and energy penalties for
crossing each cell. - The shade of a 2D cell in the energy cost map
represents the derivative of energy the rate at
which the battery level changes. - The 3D state contains position and an absolute
energy level, which is the result of traversing
the cost map.
12State Dominance Example
Time-cost map
S
G
- Goal is set to energy0.
- State (x,y,e)(2,2,15) dominates (2,2,33).
- Less energy expenditure leads to a better
solution.
13From D Lite to DD Lite
- Changes include tweaks to
- Objective function
- Algorithm
- Key change
- In addition to keeping track of one-step
lookahead of the objective function, also keep
track of one-step lookahead of whether or not a
state is dominated.
14DD Lite Extra Bookkeeping
- The g and rhs values of a node are augmented to
track dominance of the state. - The dominance component can take two values
NOT_DOMINATED or DOMINATED. - We define NOT_DOMINATED lt DOMINATED.
15DD Lite Tracking Dominance
- Definition of dominance requires us to define
comparisons between objective functions, which
are now ordered pairs. - Define less-than operator
- Note that gdom values only matter when gobjf
values are equal.
16DD Lite Tracking Consistency
- Similarly, the definition of consistency requires
us to define comparisons between g and rhs, which
are now ordered pairs. - Define less-than operator
- Just as before, dom values only matter when
objf values are equal.
17DD Lite New Update Rule for rhs
- Update rule for rhs from D Lite
- Update rule for rhs from DD Lite
-
18DD Lite New Update Rule for rhs
19DD Lite New Update Rule for rhs
- F(s) is the family of all states which can
potentially lower the objective function at s.
- D(s) is the set of all states that can cause s to
be dominated.
20Domain-Dependent Functions
- Dominate(s, s) returns TRUE iff the state s
dominates the state s. - DominanceNeighbors(s) returns the set of all
states s in S for which - Dominate(s, s) ? Dominate(s, s)
- is TRUE.
- Note that the set of dominance neighbors need not
intersect with the sets of predecessors and
successors.
21DD Lite Algorithm (1/3)
22DD Lite Algorithm (2/3)
23DD Lite Algorithm (3/3)
241 2 3
1 2 3
251 2 3
1 2 3
Initialize() U Ø For all s rhs(s),g(s) ?
8,NOT_DOMINATED rhs(sgoal) ?
0,NOT_DOMINATED U.insert(sgoal,CalculateKey(sgoa
l))
261 2 3
1 2 3
Initialize() U Ø For all s rhs(s),g(s) ?
8,NOT_DOMINATED rhs(sgoal) ?
0,NOT_DOMINATED U.insert(sgoal,CalculateKey(sgoa
l))
U
271 2 3
(rhs(s),D,g(s),D,e)
1 2 3
Initialize() U Ø For all s rhs(s),g(s) ?
8,NOT_DOMINATED rhs(sgoal) ?
0,NOT_DOMINATED U.insert(sgoal,CalculateKey(sgoa
l))
U
281 2 3
(rhs(s),D,g(s),D,e)
1 2 3
Initialize() U Ø For all s rhs(s),g(s) ?
8,NOT_DOMINATED rhs(sgoal) ?
0,NOT_DOMINATED U.insert(sgoal,CalculateKey(sgoa
l))
U
291 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U (1,2,0) 00
Initialize() U Ø For all s rhs(s),g(s) ?
8,NOT_DOMINATED rhs(sgoal) ?
0,NOT_DOMINATED U.insert(sgoal,CalculateKey(sgoa
l))
301 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U (1,2,0) 00
311 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
S (1,2,0) 00
321 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
S (1,2,0) 00
331 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
S (1,2,0) 00
341 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,2,0) , (2,1,-1), (2,2,-1)
351 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,2,0) , (2,1,-1), (2,2,-1)
Tempobjf 1 (1,2,0)
361 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,2,0) , (2,1,-1), (2,2,-1)
Temp (1,2,0), NOT_DOMINATED
371 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
s'
Temp (1,2,0), NOT_DOMINATED
381 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
Temp (1,2,0), NOT_DOMINATED
39U (1,1,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
40U (1,1,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,1,0) , (1,2,0), (2,2,-1), (3,2,-1), (3,1,0)
41U (1,1,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
Tempobjf 1 (1,2,0)
F (1,1,0) , (1,2,0), (2,2,-1), (3,2,-1), (3,1,0)
42U (1,1,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
Tempobjf 1 (1,2,0)
F (1,1,0) , (1,2,0), (2,2,-1), (3,2,-1), (3,1,0)
43U (1,1,1) 31 (2,1,1) 21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
44U (1,1,1) 31 (2,1,1) 21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,1,0) , (1,2,0), (1,3,0), (2,3,-2),
(3,3,0), (3,2,-1), (3,1,0), (2,1,-1)
45U (1,1,1) 31 (2,1,1) 21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,1,0) , (1,2,0), (1,3,0), (2,3,-2),
(3,3,0), (3,2,-1), (3,1,0), (2,1,-1)
Tempobjf 1 (1,2,0)
46U (1,1,1) 31 (2,1,1) 21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,1,0) , (1,2,0), (1,3,0), (2,3,-2),
(3,3,0), (3,2,-1), (3,1,0), (2,1,-1)
Tempobjf 1 (1,2,0)
47U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
48U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,2,0) , (2,1,-2), (2,2,-1)
49U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,2,1) (1,2,2) (1,2,3) (1,2,4) (1,1,1) (2,1,1)
(2,2,1) (1,3,1) (2,3,1)
F (1,2,0) , (2,1,-2), (2,2,-1)
Tempobjf 1 (1,2,0)
50U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,2,0) , (2,1,-2), (2,2,-1)
Tempobjf 1 (1,2,0)
51U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
52U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,3,0) , (1,2,0), (2,2,-1), (3,2,-1), (3,3,0)
53U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,3,0) , (1,2,0), (2,2,-1), (3,2,-1), (3,3,0)
Tempobjf 1 (1,2,0)
54U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,3,0) , (1,2,0), (2,2,-1), (3,2,-1), (3,3,0)
Tempobjf 1 (1,2,0)
55U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21 (1,3,1) 31 (2,3,1) 21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
56U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
S (2,1,1) 21
57U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
S (2,1,1) 21
58U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
S (2,1,1) 21
59U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
F (1,2,2) , (2,2,1), (2,1,1)
60U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2) , (2,2,1), (2,1,1)
61U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2) , (2,2,1), (2,1,1)
62U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
F (1,2,2) , (2,2,1), (2,1,1)
63U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
64U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
65U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
F (1,1,2) , (1,2,1), (1,3,1), (2,3,0),
(3,3,2), (3,2,1), (3,1,2), (2,1,1)
66U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 1 (1,2,1)
F (1,1,2) , (1,2,1), (1,3,1), (2,3,0),
(3,3,2), (3,2,1), (3,1,2), (2,1,1)
67U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 1 (1,2,1)
F (1,1,2) , (1,2,1), (1,3,1), (2,3,0),
(3,3,2), (3,2,1), (3,1,2), (2,1,1)
68U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
69U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
F (3,1,2) , (2,1,1), (2,2,1), (2,3,0), (3,3,2)
70U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 3 (2,1,1)
F (3,1,2) , (2,1,1), (2,2,1), (2,3,0), (3,3,2)
71U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 3 (2,1,1)
F (3,1,2) , (2,1,1), (2,2,1), (2,3,0), (3,3,2)
72U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (3,2,3) 33
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
73U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (3,2,3) 33
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
F (2,1,1) , (2,2,1), (3,2,1)
74U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (3,2,3) 33
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 3 (2,1,1)
F (2,1,1) , (2,2,1), (3,2,1)
75U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (3,2,3) 33
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 3 (2,1,1)
F (2,1,1) , (2,2,1), (3,2,1)
76U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (3,2,3) 33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
F (2,1,1) , (2,2,1), (3,2,1)
77U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
S (2,2,1) 21
78U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
S (2,2,1) 21
79U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (2,2,1) 21
80U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
F (1,1,2), (1,2,2), (1,2,2), (2,3,0), (3,3,2),
(3,2,1), (3,1,2), (2,1,1)
81U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,1,2), (1,2,2), (1,2,2), (2,3,0), (3,3,2),
(3,2,1), (3,1,2), (2,1,1)
82U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (2,2,3)
Tempobjf 1 (1,2,2)
83U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (2,2,1)
Tempobjf 1 (1,2,2)
84U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (2,2,1)
Tempobjf 1 (1,2,2)
85U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (2,2,1)
Tempobjf 1 (1,2,2)
86U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
87U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
F (1,2,2), (2,2,1), (2,1,1)
88U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (2,2,1), (2,1,1)
89U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (1,1,1), (1,1,3)
Tempobjf 1 (1,2,2)
90U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (1,1,1), (1,1,3)
Tempobjf 1 (1,2,2)
91U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (1,1,1), (1,1,3)
92U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
93U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
94U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
95U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
F (1,2,2), (2,3,0), (2,2,1)
96U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (2,3,0), (2,2,1)
97U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (2,3,0), (2,2,1)
S (1,3,1)
98U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (2,3,0), (2,2,1)
S (1,3,1)
99U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (2,3,0), (2,2,1)
100U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (1,3,3)
31 (3,2,3) 33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
F (1,2,2), (2,3,0), (2,2,1)
101U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (1,3,3)
31 (3,2,3) 33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
F (1,2,2), (1,3,2), (3,3,2), (3,2,1), (2,2,1)
102U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (1,3,3)
31 (3,2,3) 33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 1 (1,2,2)
F (1,2,2), (1,3,2), (3,3,2), (3,2,1), (2,2,1)
103U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (1,3,3)
31 (3,2,3) 33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 1 (1,2,2)
F (1,2,2), (1,3,2), (3,3,2), (3,2,1), (2,2,1)
S (2,3,1)
104U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (1,3,3)
31 (3,2,3) 33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 1 (1,2,2)
F (1,2,2), (1,3,2), (3,3,2), (3,2,1), (2,2,1)
S (2,3,1)
105U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
106U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
F (2,3,0), (2,2,1), (3,2,1)
107U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 4 (2,2,1)
F (2,3,0), (2,2,1), (3,2,1)
108U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 4 (2,2,1)
F (2,3,0), (2,2,1), (3,2,1)
109U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
F (2,1,1), (2,2,1), (2,3,0), (3,3,2), (3,1,2)
110U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 3 (2,1,1)
F (2,1,1), (2,2,1), (2,3,0), (3,3,2), (3,1,2)
111U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 3 (2,1,1)
F (2,1,1), (2,2,1), (2,3,0), (3,3,2), (3,1,2)
S (3,2,3)
112U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 3 (2,1,1)
F (2,1,1), (2,2,1), (2,3,0), (3,3,2), (3,1,2)
S (3,2,3)
113U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
F (2,1,1), (2,2,1), (2,3,0), (3,3,2), (3,1,2)
114U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
F (2,1,1), (2,2,1), (3,2,1)
115U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 3 (2,1,1)
F (2,1,1), (2,2,1), (3,2,1)
116U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 3 (2,1,1)
F (2,1,1), (2,2,1), (3,2,1)
S (3,1,3)
117U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 3 (2,1,1)
F (2,1,1), (2,2,1), (3,2,1)
S (3,1,3)
118U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 3 (2,1,1)
F (2,1,1), (2,2,1), (3,2,1)
S (3,1,3)
119U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
F (1,2,2), (1,1,2), (2,1,1), (3,1,2), (3,2,1),
(2,2,1)
120U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (1,1,2), (2,1,1), (3,1,2), (3,2,1),
(2,2,1)
121U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (1,1,2), (2,1,1), (3,1,2), (3,2,1),
(2,2,1)
S (3,1,3)
122U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (1,1,2), (2,1,1), (3,1,2), (3,2,1),
(2,2,1)
S (3,1,3)
123U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (1,1,2), (2,1,1), (3,1,2), (3,2,1),
(2,2,1)
S (3,1,3)
124U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (2,1,3) 21 (1,1,1) 31 (1,3,1)
31 (1,1,3) 31 (1,3,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
125U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (2,1,3) 21 (1,1,1) 31 (1,3,1)
31 (1,1,3) 31 (1,3,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
126Properties of DD Lite (1/3)
- Theorem. ComputeShortestPath() expands a
non-dominated state in the space at most twice
namely once when it is locally underconsistent
and once when it is locally overconsistent.
127Properties of DD Lite (2/3)
- Theorem. ComputeShortestPath() expands a
dominated state in the space at most four times
namely at most once when it is underconsistent
and not dominated, once when it is overconsistent
and not dominated, once when it is
underconsistent and dominated, and once when it
is overconsistent and dominated.
128Properties of DD Lite (3/3)
- Theorem. After termination of ComputeShortestPath
(), one can follow an optimal path from sstart to
sgoal by always moving from the current state s,
starting at sstart, to any non-dominated
successor s that minimizes c(s s) gobjf (s)
until sgoal is reached (breaking ties
arbitrarily).
129Simulation
- A set of square worlds ranging from 8x8 to 64x64
were solved using D Lite and DD Lite. - Costs were set randomly.
- Start and goal states at opposite corners.
- 10 trials for each size.
- Discretized energy levels.
DD Lite path
D Lite path
130Simulation Results (1/3)
- Comparison of planning efficiency with and
without dominance.
131Simulation Results (2/3)
- Ratio of performance cost of planning from
scratch versus replanning, with and without
dominance.
132Simulation Results (3/3)
- Comparison of efficiency of planning from scratch
versus replanning, with and without dominance.
133Summary
- DD Lite is an incremental search algorithm that
reasons about state dominance. - DD Lite allows search to be extended into higher
dimensional state spaces without the full cost
that it would normally entail. - Requires you to know which states are dominance
neighbors. - DD Lite is sound, complete, optimal, and
efficient.
134Questions?