DD Lite: Efficient Incremental Search with State Dominance - PowerPoint PPT Presentation

About This Presentation
Title:

DD Lite: Efficient Incremental Search with State Dominance

Description:

... Dominance ... Note that dominance defines only a partial ordering on the set of ... A dominance relation exists between two states when one state ... – PowerPoint PPT presentation

Number of Views:121
Avg rating:3.0/5.0
Slides: 135
Provided by: mrh1
Learn more at: http://www.cs.cmu.edu
Category:

less

Transcript and Presenter's Notes

Title: DD Lite: Efficient Incremental Search with State Dominance


1
DD Lite Efficient Incremental Search with State
Dominance
  • Paper by G. Ayorkor Mills-Tettey, Anthony Stentz,
    and M. Bernardine Dias

Presented on 1 October 2007 in 16-735 Motion
Planning by Ross A. Knepper and Sean Hyde
2
D Lite
  • As we saw in class last week, D Lite is an
    optimal, efficient algorithm for performing
    incremental search in a 2D grid.
  • It optimizes an objective function, g(s).
  • For example, D Lite can be used to find the
    lowest time-cost path in a grid
  • total cost19

S
G
3
D Lite
  • As we saw in class last week, D Lite is an
    optimal, efficient algorithm for performing
    incremental search in a 2D grid.
  • It optimizes an objective function, g(s).
  • For example, D Lite can be used to find the
    lowest time-cost path in a grid
  • total cost20
  • even when costs change.

S
G
4
Preview DD Lite
  • DD Lite modifiesD Lite in order to reason
    about additional cost dimensions such as energy
    expenditure.

DD Lite path
D Lite path
5
Augmented States
  • D Lite uses a state like (x, y).
  • Some problems have other information that is
    important to find the best path.
  • Augment the state with extra terms to indicate
    other factors.
  • Example. Battery energy level s(x, y, e).
  • What are the implications of that extra dimension?

6
Effect of State Augmentation
  • In normal D Lite, two equal-cost paths to the
    same position constitute a tie, which is broken
    arbitrarily.
  • With an augmented state, there are more states to
    search, but the answer which optimizes the whole
    state will be found.
  • How to handle extra dimension(s) efficiently?

7
State Dominance
  • Definition. State s1 dominates another state s2
    when no solution through s2 leads to a solution
    as good as the best solution that can be obtained
    through s1.
  • Note that dominance defines only a partial
    ordering on the set of all states, S.
  • In practical usage, selection of dominance
    neighbors is always problem-specific.

Example. Suppose there are two ways for a Mars
Rover to get to the same position in the same
amount of time, but one of them uses less battery
power. s1 (xi, yi, e1) dominates s2 (xi,
yi, e2) when e1 lt e2.
8
Dominance Relations
  • Definition. A dominance relation exists between
    two states when one state dominates the other.
  • Properties
  • Non-reflexivity A state cannot dominate itself.
  • Non-symmetry If a state u dominates a state v,
    then v does not dominate u.
  • Transitivity If a state u dominates another
    state v, and v in turn dominates w, then u
    dominates w.
  • In general, it can be hard to know whether two
    states have a dominance relation or not.

9
Why Use State Dominance?
  • A dominated state can never lead to a better
    solution than the best solution that can be
    obtained from the dominating state.
  • Can prune dominated states out of the search
    without loss of optimality.
  • Consequently, the path well find from start to
    goal will be free of dominated states.
  • Speeds up the search
  • Breaks ties in the best cost path using a second
    meaningful metric.

10
State Dominance Example
  • There are separate time- and energy- cost maps
    show the respective time and energy penalties for
    crossing each cell.
  • The shade of a 2D cell in the energy cost map
    represents the derivative of energy the rate at
    which the battery level changes.
  • The 3D state contains position and an absolute
    energy level, which is the result of traversing
    the cost map.

11
State Dominance Example
Time-cost map
Energy-cost map
S
S
G
G
  • There are separate time- and energy- cost maps
    show the respective time and energy penalties for
    crossing each cell.
  • The shade of a 2D cell in the energy cost map
    represents the derivative of energy the rate at
    which the battery level changes.
  • The 3D state contains position and an absolute
    energy level, which is the result of traversing
    the cost map.

12
State Dominance Example
Time-cost map
S
G
  • Goal is set to energy0.
  • State (x,y,e)(2,2,15) dominates (2,2,33).
  • Less energy expenditure leads to a better
    solution.

13
From D Lite to DD Lite
  • Changes include tweaks to
  • Objective function
  • Algorithm
  • Key change
  • In addition to keeping track of one-step
    lookahead of the objective function, also keep
    track of one-step lookahead of whether or not a
    state is dominated.

14
DD Lite Extra Bookkeeping
  • The g and rhs values of a node are augmented to
    track dominance of the state.
  • The dominance component can take two values
    NOT_DOMINATED or DOMINATED.
  • We define NOT_DOMINATED lt DOMINATED.

15
DD Lite Tracking Dominance
  • Definition of dominance requires us to define
    comparisons between objective functions, which
    are now ordered pairs.
  • Define less-than operator
  • Note that gdom values only matter when gobjf
    values are equal.

16
DD Lite Tracking Consistency
  • Similarly, the definition of consistency requires
    us to define comparisons between g and rhs, which
    are now ordered pairs.
  • Define less-than operator
  • Just as before, dom values only matter when
    objf values are equal.

17
DD Lite New Update Rule for rhs
  • Update rule for rhs from D Lite
  • Update rule for rhs from DD Lite

18
DD Lite New Update Rule for rhs

19
DD Lite New Update Rule for rhs
  • F(s) is the family of all states which can
    potentially lower the objective function at s.
  • D(s) is the set of all states that can cause s to
    be dominated.

20
Domain-Dependent Functions
  • Dominate(s, s) returns TRUE iff the state s
    dominates the state s.
  • DominanceNeighbors(s) returns the set of all
    states s in S for which
  • Dominate(s, s) ? Dominate(s, s)
  • is TRUE.
  • Note that the set of dominance neighbors need not
    intersect with the sets of predecessors and
    successors.

21
DD Lite Algorithm (1/3)
22
DD Lite Algorithm (2/3)
23
DD Lite Algorithm (3/3)
24
1 2 3
1 2 3
25
1 2 3
1 2 3
Initialize() U Ø For all s rhs(s),g(s) ?
8,NOT_DOMINATED rhs(sgoal) ?
0,NOT_DOMINATED U.insert(sgoal,CalculateKey(sgoa
l))
26
1 2 3
1 2 3
Initialize() U Ø For all s rhs(s),g(s) ?
8,NOT_DOMINATED rhs(sgoal) ?
0,NOT_DOMINATED U.insert(sgoal,CalculateKey(sgoa
l))
U
27
1 2 3
(rhs(s),D,g(s),D,e)
1 2 3
Initialize() U Ø For all s rhs(s),g(s) ?
8,NOT_DOMINATED rhs(sgoal) ?
0,NOT_DOMINATED U.insert(sgoal,CalculateKey(sgoa
l))
U
28
1 2 3
(rhs(s),D,g(s),D,e)
1 2 3
Initialize() U Ø For all s rhs(s),g(s) ?
8,NOT_DOMINATED rhs(sgoal) ?
0,NOT_DOMINATED U.insert(sgoal,CalculateKey(sgoa
l))
U
29
1 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U (1,2,0) 00
Initialize() U Ø For all s rhs(s),g(s) ?
8,NOT_DOMINATED rhs(sgoal) ?
0,NOT_DOMINATED U.insert(sgoal,CalculateKey(sgoa
l))
30
1 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U (1,2,0) 00
31
1 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
S (1,2,0) 00
32
1 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
S (1,2,0) 00
33
1 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
S (1,2,0) 00
34
1 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,2,0) , (2,1,-1), (2,2,-1)
35
1 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,2,0) , (2,1,-1), (2,2,-1)
Tempobjf 1 (1,2,0)
36
1 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,2,0) , (2,1,-1), (2,2,-1)
Temp (1,2,0), NOT_DOMINATED
37
1 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
s'
Temp (1,2,0), NOT_DOMINATED
38
1 2 3
(rhs(s),D,g(s),D,e)
1 2 3
U
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
Temp (1,2,0), NOT_DOMINATED
39
U (1,1,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
40
U (1,1,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,1,0) , (1,2,0), (2,2,-1), (3,2,-1), (3,1,0)
41
U (1,1,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
Tempobjf 1 (1,2,0)
F (1,1,0) , (1,2,0), (2,2,-1), (3,2,-1), (3,1,0)
42
U (1,1,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
Tempobjf 1 (1,2,0)
F (1,1,0) , (1,2,0), (2,2,-1), (3,2,-1), (3,1,0)
43
U (1,1,1) 31 (2,1,1) 21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
44
U (1,1,1) 31 (2,1,1) 21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,1,0) , (1,2,0), (1,3,0), (2,3,-2),
(3,3,0), (3,2,-1), (3,1,0), (2,1,-1)
45
U (1,1,1) 31 (2,1,1) 21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,1,0) , (1,2,0), (1,3,0), (2,3,-2),
(3,3,0), (3,2,-1), (3,1,0), (2,1,-1)
Tempobjf 1 (1,2,0)
46
U (1,1,1) 31 (2,1,1) 21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,1,0) , (1,2,0), (1,3,0), (2,3,-2),
(3,3,0), (3,2,-1), (3,1,0), (2,1,-1)
Tempobjf 1 (1,2,0)
47
U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
48
U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,2,0) , (2,1,-2), (2,2,-1)
49
U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,2,1) (1,2,2) (1,2,3) (1,2,4) (1,1,1) (2,1,1)
(2,2,1) (1,3,1) (2,3,1)
F (1,2,0) , (2,1,-2), (2,2,-1)
Tempobjf 1 (1,2,0)
50
U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,2,0) , (2,1,-2), (2,2,-1)
Tempobjf 1 (1,2,0)
51
U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
52
U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,3,0) , (1,2,0), (2,2,-1), (3,2,-1), (3,3,0)
53
U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,3,0) , (1,2,0), (2,2,-1), (3,2,-1), (3,3,0)
Tempobjf 1 (1,2,0)
54
U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
F (1,3,0) , (1,2,0), (2,2,-1), (3,2,-1), (3,3,0)
Tempobjf 1 (1,2,0)
55
U (1,1,1) 31 (2,1,1) 21 (2,2,1)
21 (1,3,1) 31 (2,3,1) 21
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,1) (2,1,1) (2,2,1) (1,3,1) (2,3,1)
56
U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
S (2,1,1) 21
57
U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
S (2,1,1) 21
58
U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
S (2,1,1) 21
59
U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
F (1,2,2) , (2,2,1), (2,1,1)
60
U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2) , (2,2,1), (2,1,1)
61
U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2) , (2,2,1), (2,1,1)
62
U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
F (1,2,2) , (2,2,1), (2,1,1)
63
U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
64
U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
65
U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
F (1,1,2) , (1,2,1), (1,3,1), (2,3,0),
(3,3,2), (3,2,1), (3,1,2), (2,1,1)
66
U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 1 (1,2,1)
F (1,1,2) , (1,2,1), (1,3,1), (2,3,0),
(3,3,2), (3,2,1), (3,1,2), (2,1,1)
67
U (2,2,1) 21 (2,3,1) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 1 (1,2,1)
F (1,1,2) , (1,2,1), (1,3,1), (2,3,0),
(3,3,2), (3,2,1), (3,1,2), (2,1,1)
68
U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
69
U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
F (3,1,2) , (2,1,1), (2,2,1), (2,3,0), (3,3,2)
70
U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 3 (2,1,1)
F (3,1,2) , (2,1,1), (2,2,1), (2,3,0), (3,3,2)
71
U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 3 (2,1,1)
F (3,1,2) , (2,1,1), (2,2,1), (2,3,0), (3,3,2)
72
U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (3,2,3) 33
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
73
U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (3,2,3) 33
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
F (2,1,1) , (2,2,1), (3,2,1)
74
U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (3,2,3) 33
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 3 (2,1,1)
F (2,1,1) , (2,2,1), (3,2,1)
75
U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (3,2,3) 33
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
Tempobjf 3 (2,1,1)
F (2,1,1) , (2,2,1), (3,2,1)
76
U (2,2,1) 21 (2,3,1) 21 (2,2,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (3,2,3) 33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(1,1,3) (1,2,3) (2,2,3) (3,2,3) (3,1,3)
F (2,1,1) , (2,2,1), (3,2,1)
77
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
S (2,2,1) 21
78
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
S (2,2,1) 21
79
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (2,2,1) 21
80
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
F (1,1,2), (1,2,2), (1,2,2), (2,3,0), (3,3,2),
(3,2,1), (3,1,2), (2,1,1)
81
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,1,2), (1,2,2), (1,2,2), (2,3,0), (3,3,2),
(3,2,1), (3,1,2), (2,1,1)
82
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (2,2,3)
Tempobjf 1 (1,2,2)
83
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (2,2,1)
Tempobjf 1 (1,2,2)
84
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (2,2,1)
Tempobjf 1 (1,2,2)
85
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (2,2,1)
Tempobjf 1 (1,2,2)
86
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
87
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
F (1,2,2), (2,2,1), (2,1,1)
88
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (2,2,1), (2,1,1)
89
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (1,1,1), (1,1,3)
Tempobjf 1 (1,2,2)
90
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (1,1,1), (1,1,3)
Tempobjf 1 (1,2,2)
91
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
S (1,1,1), (1,1,3)
92
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
93
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
94
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
95
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
F (1,2,2), (2,3,0), (2,2,1)
96
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (2,3,0), (2,2,1)
97
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (2,3,0), (2,2,1)
S (1,3,1)
98
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (2,3,0), (2,2,1)
S (1,3,1)
99
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (2,3,0), (2,2,1)
100
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (1,3,3)
31 (3,2,3) 33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
F (1,2,2), (2,3,0), (2,2,1)
101
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (1,3,3)
31 (3,2,3) 33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
F (1,2,2), (1,3,2), (3,3,2), (3,2,1), (2,2,1)
102
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (1,3,3)
31 (3,2,3) 33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 1 (1,2,2)
F (1,2,2), (1,3,2), (3,3,2), (3,2,1), (2,2,1)
103
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (1,3,3)
31 (3,2,3) 33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 1 (1,2,2)
F (1,2,2), (1,3,2), (3,3,2), (3,2,1), (2,2,1)
S (2,3,1)
104
U (2,3,1) 21 (2,2,3) 21 (1,1,1)
31 (1,3,1) 31 (1,1,3) 31 (1,3,3)
31 (3,2,3) 33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 1 (1,2,2)
F (1,2,2), (1,3,2), (3,3,2), (3,2,1), (2,2,1)
S (2,3,1)
105
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
106
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
F (2,3,0), (2,2,1), (3,2,1)
107
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 4 (2,2,1)
F (2,3,0), (2,2,1), (3,2,1)
108
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 4 (2,2,1)
F (2,3,0), (2,2,1), (3,2,1)
109
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
F (2,1,1), (2,2,1), (2,3,0), (3,3,2), (3,1,2)
110
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 3 (2,1,1)
F (2,1,1), (2,2,1), (2,3,0), (3,3,2), (3,1,2)
111
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 3 (2,1,1)
F (2,1,1), (2,2,1), (2,3,0), (3,3,2), (3,1,2)
S (3,2,3)
112
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 3 (2,1,1)
F (2,1,1), (2,2,1), (2,3,0), (3,3,2), (3,1,2)
S (3,2,3)
113
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
F (2,1,1), (2,2,1), (2,3,0), (3,3,2), (3,1,2)
114
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
F (2,1,1), (2,2,1), (3,2,1)
115
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 3 (2,1,1)
F (2,1,1), (2,2,1), (3,2,1)
116
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 3 (2,1,1)
F (2,1,1), (2,2,1), (3,2,1)
S (3,1,3)
117
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 3 (2,1,1)
F (2,1,1), (2,2,1), (3,2,1)
S (3,1,3)
118
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,1)
Tempobjf 3 (2,1,1)
F (2,1,1), (2,2,1), (3,2,1)
S (3,1,3)
119
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
F (1,2,2), (1,1,2), (2,1,1), (3,1,2), (3,2,1),
(2,2,1)
120
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (1,1,2), (2,1,1), (3,1,2), (3,2,1),
(2,2,1)
121
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (1,1,2), (2,1,1), (3,1,2), (3,2,1),
(2,2,1)
S (3,1,3)
122
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (1,1,2), (2,1,1), (3,1,2), (3,2,1),
(2,2,1)
S (3,1,3)
123
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (1,1,1) 31 (1,3,1) 31 (1,1,3)
31 (1,3,3) 31 (3,2,3) 33 (3,1,3)
43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
Tempobjf 1 (1,2,2)
F (1,2,2), (1,1,2), (2,1,1), (3,1,2), (3,2,1),
(2,2,1)
S (3,1,3)
124
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (2,1,3) 21 (1,1,1) 31 (1,3,1)
31 (1,1,3) 31 (1,3,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
125
U (2,3,1) 21 (2,2,3) 21 (2,3,3)
21 (2,1,3) 21 (1,1,1) 31 (1,3,1)
31 (1,1,3) 31 (1,3,3) 31 (3,2,3)
33 (3,1,3) 43
1 2 3
1 2 3
(rhs(s),D,g(s),D,e)
DominanceNeighbors(s) U Pred(s)
(2,2,3) (1,1,3) (1,2,3) (1,3,3) (2,3,3) (3,3,3)
(3,2,3) (3,1,3) (2,1,3)
126
Properties of DD Lite (1/3)
  • Theorem. ComputeShortestPath() expands a
    non-dominated state in the space at most twice
    namely once when it is locally underconsistent
    and once when it is locally overconsistent.

127
Properties of DD Lite (2/3)
  • Theorem. ComputeShortestPath() expands a
    dominated state in the space at most four times
    namely at most once when it is underconsistent
    and not dominated, once when it is overconsistent
    and not dominated, once when it is
    underconsistent and dominated, and once when it
    is overconsistent and dominated.

128
Properties of DD Lite (3/3)
  • Theorem. After termination of ComputeShortestPath
    (), one can follow an optimal path from sstart to
    sgoal by always moving from the current state s,
    starting at sstart, to any non-dominated
    successor s that minimizes c(s s) gobjf (s)
    until sgoal is reached (breaking ties
    arbitrarily).

129
Simulation
  • A set of square worlds ranging from 8x8 to 64x64
    were solved using D Lite and DD Lite.
  • Costs were set randomly.
  • Start and goal states at opposite corners.
  • 10 trials for each size.
  • Discretized energy levels.

DD Lite path
D Lite path
130
Simulation Results (1/3)
  • Comparison of planning efficiency with and
    without dominance.

131
Simulation Results (2/3)
  • Ratio of performance cost of planning from
    scratch versus replanning, with and without
    dominance.

132
Simulation Results (3/3)
  • Comparison of efficiency of planning from scratch
    versus replanning, with and without dominance.

133
Summary
  • DD Lite is an incremental search algorithm that
    reasons about state dominance.
  • DD Lite allows search to be extended into higher
    dimensional state spaces without the full cost
    that it would normally entail.
  • Requires you to know which states are dominance
    neighbors.
  • DD Lite is sound, complete, optimal, and
    efficient.

134
Questions?
Write a Comment
User Comments (0)
About PowerShow.com